IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v3y2010i1p57-134d6825.html
   My bibliography  Save this article

Single-Chamber Solid Oxide Fuel Cell Technology—From Its Origins to Today’s State of the Art

Author

Listed:
  • Melanie Kuhn

    (Department of Mechanical Engineering, École Polytechnique de Montréal, Montréal, Québec, H3T 1J4, Canada
    Current address: Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan)

  • Teko W. Napporn

    (Équipe Électrocatalyse, Laboratoire de Catalyse en Chimie Organique, UMR CNRS 6503, Université de Poitiers, 86022 Poitiers, France)

Abstract

In single-chamber solid oxide fuel cells (SC-SOFCs), both anode and cathode are situated in a common gas chamber and are exposed to a mixture of fuel and oxidant. The working principle is based on the difference in catalytic activity of the electrodes for the respective anodic and cathodic reactions. The resulting difference in oxygen partial pressure between the electrodes leads to the generation of an open circuit voltage. Progress in SC-SOFC technology has enabled the generation of power outputs comparable to those of conventional SOFCs. This paper provides a detailed review of the development of SC-SOFC technology.

Suggested Citation

  • Melanie Kuhn & Teko W. Napporn, 2010. "Single-Chamber Solid Oxide Fuel Cell Technology—From Its Origins to Today’s State of the Art," Energies, MDPI, vol. 3(1), pages 1-78, January.
  • Handle: RePEc:gam:jeners:v:3:y:2010:i:1:p:57-134:d:6825
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/3/1/57/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/3/1/57/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zongping Shao & Sossina M. Haile, 2004. "A high-performance cathode for the next generation of solid-oxide fuel cells," Nature, Nature, vol. 431(7005), pages 170-173, September.
    2. Zongping Shao & Sossina M. Haile & Jeongmin Ahn & Paul D. Ronney & Zhongliang Zhan & Scott A. Barnett, 2005. "A thermally self-sustained micro solid-oxide fuel-cell stack with high power density," Nature, Nature, vol. 435(7043), pages 795-798, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Q. Jeangros & M. Bugnet & T. Epicier & C. Frantz & S. Diethelm & D. Montinaro & E. Tyukalova & Y. Pivak & J. herle & A. Hessler-Wyser & M. Duchamp, 2023. "Operando analysis of a solid oxide fuel cell by environmental transmission electron microscopy," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Choi, Indae & Kim, Jung-Sik & Venkatesan, Vijay & Ranaweera, Manoj, 2017. "Fabrication and evaluation of a novel wavy Single Chamber Solid Oxide Fuel Cell via in-situ monitoring of curvature evolution," Applied Energy, Elsevier, vol. 195(C), pages 1038-1046.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choi, Indae & Kim, Jung-Sik & Venkatesan, Vijay & Ranaweera, Manoj, 2017. "Fabrication and evaluation of a novel wavy Single Chamber Solid Oxide Fuel Cell via in-situ monitoring of curvature evolution," Applied Energy, Elsevier, vol. 195(C), pages 1038-1046.
    2. Lv, Xiuqing & Chen, Huili & Zhou, Wei & Li, Si-Dian & Cheng, Fangqin & Shao, Zongping, 2022. "SrCo0.4Fe0.4Zr0.1Y0.1O3-δ, A new CO2 tolerant cathode for proton-conducting solid oxide fuel cells," Renewable Energy, Elsevier, vol. 185(C), pages 8-16.
    3. Gómez, Sergio Yesid & Hotza, Dachamir, 2016. "Current developments in reversible solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 155-174.
    4. Vinoth Kumar, R. & Khandale, A.P., 2022. "A review on recent progress and selection of cobalt-based cathode materials for low temperature-solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    5. Edoardo Magnone, 2014. "A novel graphical representation of sentence complexity: the description and its application," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(2), pages 1301-1329, February.
    6. Jiao, Yong & Zhang, Liqin & An, Wenting & Zhou, Wei & Sha, Yujing & Shao, Zongping & Bai, Jianping & Li, Si-Dian, 2016. "Controlled deposition and utilization of carbon on Ni-YSZ anodes of SOFCs operating on dry methane," Energy, Elsevier, vol. 113(C), pages 432-443.
    7. Rhushikesh Ghotkar & Ryan J. Milcarek, 2022. "Modeling of the Kinetic Factors in Flame-Assisted Fuel Cells," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    8. Zuoqing Liu & Yuesheng Bai & Hainan Sun & Daqin Guan & Wenhuai Li & Wei-Hsiang Huang & Chih-Wen Pao & Zhiwei Hu & Guangming Yang & Yinlong Zhu & Ran Ran & Wei Zhou & Zongping Shao, 2024. "Synergistic dual-phase air electrode enables high and durable performance of reversible proton ceramic electrochemical cells," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Tanveer, Waqas Hassan & Abdelkareem, Mohammad Ali & Kolosz, Ben W. & Rezk, Hegazy & Andresen, John & Cha, Suk Won & Sayed, Enas Taha, 2021. "The role of vacuum based technologies in solid oxide fuel cell development to utilize industrial waste carbon for power production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    10. Hong Zhang & Zuobin Zhang & Zhou Li & Hongjie Han & Weiguo Song & Jianxin Yi, 2023. "A chemiresistive-potentiometric multivariate sensor for discriminative gas detection," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Meng, Xiuxia & Liu, Yongna & Yang, Naitao & Tan, Xiaoyao & Liu, Jian & Diniz da Costa, João C. & Liu, Shaomin, 2017. "Highly compact and robust hollow fiber solid oxide cells for flexible power generation and gas production," Applied Energy, Elsevier, vol. 205(C), pages 741-748.
    12. Lo Basso, Gianluigi & de Santoli, Livio & Albo, Angelo & Nastasi, Benedetto, 2015. "H2NG (hydrogen-natural gas mixtures) effects on energy performances of a condensing micro-CHP (combined heat and power) for residential applications: An expeditious assessment of water condensation an," Energy, Elsevier, vol. 84(C), pages 397-418.
    13. Zhu, Bin & Fan, Liangdong & Lund, Peter, 2013. "Breakthrough fuel cell technology using ceria-based multi-functional nanocomposites," Applied Energy, Elsevier, vol. 106(C), pages 163-175.
    14. Lee, Yeageun & Park, Joonho & Yu, Wonjong & Tanveer, Waqas Hassan & Lee, Yoon Ho & Cho, Gu Young & Park, Taehyun & Zheng, Chunhua & Lee, Wonyoung & Cha, Suk Won, 2018. "Nickel-based bilayer thin-film anodes for low-temperature solid oxide fuel cells," Energy, Elsevier, vol. 161(C), pages 1133-1138.
    15. Chang, Ikwhang & Bae, Jiwoong & Park, Joonho & Lee, Sunho & Ban, Myeongseok & Park, Taehyun & Lee, Yoon Ho & Song, Han Ho & Kim, Young-Beom & Cha, Suk Won, 2016. "A thermally self-sustaining solid oxide fuel cell system at ultra-low operating temperature (319 °C)," Energy, Elsevier, vol. 104(C), pages 107-113.
    16. Ji Soo Lim & Ho-Hyun Nahm & Marco Campanini & Jounghee Lee & Yong-Jin Kim & Heung-Sik Park & Jeonghun Suh & Jun Jung & Yongsoo Yang & Tae Yeong Koo & Marta D. Rossell & Yong-Hyun Kim & Chan-Ho Yang, 2022. "Critical ionic transport across an oxygen-vacancy ordering transition," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Zhang, Haotian & Sun, Zhuxing & Hu, Yun Hang, 2021. "Steam reforming of methane: Current states of catalyst design and process upgrading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    18. Anastassios Stamatis & Christina Vinni & Diamantis Bakalis & Fotini Tzorbatzoglou & Panagiotis Tsiakaras, 2012. "Exergy Analysis of an Intermediate Temperature Solid Oxide Fuel Cell-Gas Turbine Hybrid System Fed with Ethanol," Energies, MDPI, vol. 5(11), pages 1-20, October.
    19. Aruna, S.T. & Balaji, L.S. & Kumar, S. Senthil & Prakash, B. Shri, 2017. "Electrospinning in solid oxide fuel cells – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 673-682.
    20. Jiao, Yong & Tian, Wenjuan & Chen, Huili & Shi, Huangang & Yang, Binbin & Li, Chao & Shao, Zongping & Zhu, Zhenping & Li, Si-Dian, 2015. "In situ catalyzed Boudouard reaction of coal char for solid oxide-based carbon fuel cells with improved performance," Applied Energy, Elsevier, vol. 141(C), pages 200-208.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:3:y:2010:i:1:p:57-134:d:6825. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.