IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i6p1478-d1614296.html
   My bibliography  Save this article

The Catalytic Valorization of Lignin from Biomass for the Production of Liquid Fuels

Author

Listed:
  • Chenchen Gui

    (Laboratory of Clean Low-Carbon Energy, University of Science and Technology of China, Hefei 230023, China)

  • Lida Wang

    (Laboratory of Clean Low-Carbon Energy, University of Science and Technology of China, Hefei 230023, China)

  • Guoshun Liu

    (Laboratory of Clean Low-Carbon Energy, University of Science and Technology of China, Hefei 230023, China)

  • Ajibola T. Ogunbiyi

    (Laboratory of Clean Low-Carbon Energy, University of Science and Technology of China, Hefei 230023, China)

  • Wenzhi Li

    (Laboratory of Clean Low-Carbon Energy, University of Science and Technology of China, Hefei 230023, China)

Abstract

With the overuse of fossil fuels, people are looking for alternatives. This is an area where biofuels have received a lot of attention. Studies have also shown that a large variety of liquid fuels of commercial interest can be obtained via lignin valorization. Lignin is rich in aromatic ring structures and can be used as a sustainable raw material to produce high-value energy. Therefore, progress in the preparation of liquid fuels from lignin by pyrolysis, hydro-processing, and oxidation is analyzed in this review. Nevertheless, due to the three-dimension network structure of lignin, there are many barriers that need to be surmounted before utilizing it, such as its complex connection with cellulose and hemicellulose, which makes its separation difficult. In this paper, different pretreatment methods are summarized for separating lignin from other two components. Finally, the challenges in future trends of lignin valorization are summarized and outlined. It is clear that the construction of efficient separation and catalytic systems will be the focus of future research in this field.

Suggested Citation

  • Chenchen Gui & Lida Wang & Guoshun Liu & Ajibola T. Ogunbiyi & Wenzhi Li, 2025. "The Catalytic Valorization of Lignin from Biomass for the Production of Liquid Fuels," Energies, MDPI, vol. 18(6), pages 1-41, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:6:p:1478-:d:1614296
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/6/1478/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/6/1478/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Engin Kocaturk & Tufan Salan & Orhan Ozcelik & Mehmet Hakkı Alma & Zeki Candan, 2023. "Recent Advances in Lignin-Based Biofuel Production," Energies, MDPI, vol. 16(8), pages 1-17, April.
    2. R. D. Cortright & R. R. Davda & J. A. Dumesic, 2002. "Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water," Nature, Nature, vol. 418(6901), pages 964-967, August.
    3. Song, Guojie & Bai, Yalin & Pan, Zhenying & Liu, Dan & Qin, Yuanhang & Zhang, Yinchao & Fan, Zhihao & Li, Yuhan & Madadi, Meysam, 2024. "Enhancing fermentable sugar production from sugarcane bagasse through surfactant-assisted ethylene glycol pretreatment and enzymatic hydrolysis: Reduced temperature and enzyme loading," Renewable Energy, Elsevier, vol. 227(C).
    4. Ryu, Hae Won & Lee, Hyung Won & Jae, Jungho & Park, Young-Kwon, 2019. "Catalytic pyrolysis of lignin for the production of aromatic hydrocarbons: Effect of magnesium oxide catalyst," Energy, Elsevier, vol. 179(C), pages 669-675.
    5. Andreas Otto Wagner & Nina Lackner & Mira Mutschlechner & Eva Maria Prem & Rudolf Markt & Paul Illmer, 2018. "Biological Pretreatment Strategies for Second-Generation Lignocellulosic Resources to Enhance Biogas Production," Energies, MDPI, vol. 11(7), pages 1-14, July.
    6. Ambursa, Murtala M. & Juan, Joon Ching & Yahaya, Y. & Taufiq-Yap, Y.H. & Lin, Yu-Chuan & Lee, Hwei Voon, 2021. "A review on catalytic hydrodeoxygenation of lignin to transportation fuels by using nickel-based catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    7. Lv, Yanting & Chen, Zhengyu & Wang, Huan & Xiao, Yongcang & Ling, Rongxin & Gong, Murong & Wei, Weiqi, 2022. "Enhancement of glucose production from sugarcane bagasse through an HCl-catalyzed ethylene glycol pretreatment and Tween 80," Renewable Energy, Elsevier, vol. 194(C), pages 495-503.
    8. Vincent Oriez & Jérôme Peydecastaing & Pierre-Yves Pontalier, 2020. "Lignocellulosic Biomass Mild Alkaline Fractionation and Resulting Extract Purification Processes: Conditions, Yields, and Purities," Clean Technol., MDPI, vol. 2(1), pages 1-25, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zihao Zhang & Qiang Li & Xiangkun Wu & Claire Bourmaud & Dionisios G. Vlachos & Jeremy Luterbacher & Andras Bodi & Patrick Hemberger, 2024. "A solution for 4-propylguaiacol hydrodeoxygenation without ring saturation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Yevheniia Ziabina & Tetyana Pimonenko, 2020. "The Green Deal Policy for Renewable Energy: A Bibliometric Analysis," Virtual Economics, The London Academy of Science and Business, vol. 3(4), pages 147-168, October.
    3. Yoon, Kwangsuk & Lee, Sang Soo & Ok, Yong Sik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Enhancement of syngas for H2 production via catalytic pyrolysis of orange peel using CO2 and bauxite residue," Applied Energy, Elsevier, vol. 254(C).
    4. Zhang, Huaiwen & Yao, Yiqing & Deng, Jun & Zhang, Jian-Li & Qiu, Yaojing & Li, Guofu & Liu, Jian, 2022. "Hydrogen production via anaerobic digestion of coal modified by white-rot fungi and its application benefits analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    5. Yan, Beibei & Li, Songjiang & Cao, Xingsijin & Zhu, Xiaochao & Li, Jian & Zhou, Shengquan & Zhao, Juan & Sun, Yunan & Chen, Guanyi, 2023. "Flue gas torrefaction integrated with gasification based on the circulation of Mg-additive," Applied Energy, Elsevier, vol. 333(C).
    6. Feng, Junfeng & Yang, Zhongzhi & Hse, Chung-yun & Su, Qiuli & Wang, Kui & Jiang, Jianchun & Xu, Junming, 2017. "In situ catalytic hydrogenation of model compounds and biomass-derived phenolic compounds for bio-oil upgrading," Renewable Energy, Elsevier, vol. 105(C), pages 140-148.
    7. Małgorzata Hawrot-Paw & Aleksander Stańczuk, 2022. "From Waste Biomass to Cellulosic Ethanol by Separate Hydrolysis and Fermentation (SHF) with Trichoderma viride," Sustainability, MDPI, vol. 15(1), pages 1-10, December.
    8. Saba, N. & Jawaid, M. & Hakeem, K.R. & Paridah, M.T. & Khalina, A. & Alothman, O.Y., 2015. "Potential of bioenergy production from industrial kenaf (Hibiscus cannabinus L.) based on Malaysian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 446-459.
    9. Wang, Biao & Chen, Yasen & Chen, Wei & Hu, Junhao & Chang, Chun & Pang, Shusheng & Li, Pan, 2024. "Enhancement of aromatics and syngas production by co-pyrolysis of biomass and plastic waste using biochar-based catalysts in microwave field," Energy, Elsevier, vol. 293(C).
    10. Moreira, Rui & Bimbela, Fernando & Gandía, Luis M. & Ferreira, Abel & Sánchez, Jose Luis & Portugal, António, 2021. "Oxidative steam reforming of glycerol. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    11. Xie, Xinyu & Song, Kai & Wang, Jing & Hu, Jinguang & Wu, Shufang & Chu, Qiulu, 2024. "Efficient ethanol production from masson pine sawdust by various organosolv pretreatment and modified pre-hydrolysis simultaneous saccharification and fermentation," Renewable Energy, Elsevier, vol. 225(C).
    12. Ane Caroline Pereira Borges & Jude Azubuike Onwudili & Heloysa Andrade & Carine Alves & Andrew Ingram & Silvio Vieira de Melo & Ednildo Torres, 2020. "Catalytic Properties and Recycling of NiFe 2 O 4 Catalyst for Hydrogen Production by Supercritical Water Gasification of Eucalyptus Wood Chips," Energies, MDPI, vol. 13(17), pages 1-17, September.
    13. Wang, Jian & Wang, Yincheng & Dong, Xiaoshan & Hu, Yongjie & Tao, Junyu & Kumar, Akash & Yan, Beibei & Chen, Yuxuan & Su, Hong & Chen, Guanyi, 2024. "Insights into behaviors of functional groups in biomass derived products during aqueous phase reforming over Ni/α-MoO3 catalysts," Renewable Energy, Elsevier, vol. 224(C).
    14. Yi Zhang & Mingting Kou & Kaihua Chen & Jiancheng Guan & Yuchen Li, 2016. "Modelling the Basic Research Competitiveness Index (BR-CI) with an application to the biomass energy field," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(3), pages 1221-1241, September.
    15. Su, Hongcai & Yan, Mi & Wang, Shurong, 2022. "Recent advances in supercritical water gasification of biowaste catalyzed by transition metal-based catalysts for hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    16. Dar, Rouf Ahmad & Tsui, To-Hung & Zhang, Le & Smoliński, Adam & Tong, Yen Wah & Mohamed Rasmey, Abdel-Hamied & Liu, Ronghou, 2025. "Recent achievements in magnetic-field-assisted anaerobic digestion for bioenergy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    17. Nils Kretzschmar & Markus Seifert & Oliver Busse & Jan J. Weigand, 2022. "Prediction of Retention Indices and Response Factors of Oxygenates for GC-FID by Multilinear Regression," Data, MDPI, vol. 7(9), pages 1-12, September.
    18. Guo, Y. & Wang, S.Z. & Xu, D.H. & Gong, Y.M. & Ma, H.H. & Tang, X.Y., 2010. "Review of catalytic supercritical water gasification for hydrogen production from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 334-343, January.
    19. Khatun, Rahima & Reza, Mohammad Imam Hasan & Moniruzzaman, M. & Yaakob, Zahira, 2017. "Sustainable oil palm industry: The possibilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 608-619.
    20. Oliveira, A.S. & Baeza, J.A. & Garcia, D. & Saenz de Miera, B. & Calvo, L. & Rodriguez, J.J. & Gilarranz, M.A., 2020. "Effect of basicity in the aqueous phase reforming of brewery wastewater for H2 production," Renewable Energy, Elsevier, vol. 148(C), pages 889-896.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:6:p:1478-:d:1614296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.