Wind-Mambaformer: Ultra-Short-Term Wind Turbine Power Forecasting Based on Advanced Transformer and Mamba Models
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Bommidi, Bala Saibabu & Teeparthi, Kiran & Kosana, Vishalteja, 2023. "Hybrid wind speed forecasting using ICEEMDAN and transformer model with novel loss function," Energy, Elsevier, vol. 265(C).
- Pan, Xiaoxin & Wang, Long & Wang, Zhongju & Huang, Chao, 2022. "Short-term wind speed forecasting based on spatial-temporal graph transformer networks," Energy, Elsevier, vol. 253(C).
- E. J. Hannan & L. Kavalieris, 1986. "Regression, Autoregression Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 7(1), pages 27-49, January.
- Neshat, Mehdi & Nezhad, Meysam Majidi & Sergiienko, Nataliia Y. & Mirjalili, Seyedali & Piras, Giuseppe & Garcia, Davide Astiaso, 2022. "Wave power forecasting using an effective decomposition-based convolutional Bi-directional model with equilibrium Nelder-Mead optimiser," Energy, Elsevier, vol. 256(C).
- Wang, Anqi & Pei, Yan & Zhu, Yunyi & Qian, Zheng, 2023. "Wind turbine fault detection and identification through self-attention-based mechanism embedded with a multivariable query pattern," Renewable Energy, Elsevier, vol. 211(C), pages 918-937.
- Vladislav N. Kovalnogov & Ruslan V. Fedorov & Andrei V. Chukalin & Vladimir N. Klyachkin & Vladimir P. Tabakov & Denis A. Demidov, 2024. "Applied Machine Learning to Study the Movement of Air Masses in the Wind Farm Area," Energies, MDPI, vol. 17(16), pages 1-27, August.
- Wang, Anqi & Pei, Yan & Qian, Zheng & Zareipour, Hamidreza & Jing, Bo & An, Jiayi, 2022. "A two-stage anomaly decomposition scheme based on multi-variable correlation extraction for wind turbine fault detection and identification," Applied Energy, Elsevier, vol. 321(C).
- Majidi Nezhad, M. & Heydari, A. & Pirshayan, E. & Groppi, D. & Astiaso Garcia, D., 2021. "A novel forecasting model for wind speed assessment using sentinel family satellites images and machine learning method," Renewable Energy, Elsevier, vol. 179(C), pages 2198-2211.
- Fan, Junliang & Ma, Xin & Wu, Lifeng & Zhang, Fucang & Yu, Xiang & Zeng, Wenzhi, 2019. "Light Gradient Boosting Machine: An efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data," Agricultural Water Management, Elsevier, vol. 225(C).
- Putz, Dominik & Gumhalter, Michael & Auer, Hans, 2021. "A novel approach to multi-horizon wind power forecasting based on deep neural architecture," Renewable Energy, Elsevier, vol. 178(C), pages 494-505.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jiang, Wenjun & Liu, Bo & Liang, Yang & Gao, Huanxiang & Lin, Pengfei & Zhang, Dongqin & Hu, Gang, 2024. "Applicability analysis of transformer to wind speed forecasting by a novel deep learning framework with multiple atmospheric variables," Applied Energy, Elsevier, vol. 353(PB).
- Bai, Xinjian & Han, Shuang & Kang, Zijian & Tao, Tao & Pang, Cong & Dai, Shixian & Liu, Yongqian, 2024. "Wind turbine gearbox oil temperature feature extraction and condition monitoring based on energy flow," Applied Energy, Elsevier, vol. 371(C).
- Lin, Shengmao & Wang, Shu & Xu, Xuefang & Li, Ruixiong & Shi, Peiming, 2024. "GAOformer: An adaptive spatiotemporal feature fusion transformer utilizing GAT and optimizable graph matrixes for offshore wind speed prediction," Energy, Elsevier, vol. 292(C).
- Bentsen, Lars Ødegaard & Warakagoda, Narada Dilp & Stenbro, Roy & Engelstad, Paal, 2023. "Spatio-temporal wind speed forecasting using graph networks and novel Transformer architectures," Applied Energy, Elsevier, vol. 333(C).
- Yamashiro, Hirochika & Nonaka, Hirofumi, 2021. "Estimation of processing time using machine learning and real factory data for optimization of parallel machine scheduling problem," Operations Research Perspectives, Elsevier, vol. 8(C).
- Georgios Chortareas & George Kapetanios, 2013.
"How Puzzling Is The Ppp Puzzle? An Alternative Half‐Life Measure Of Convergence To Ppp,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(3), pages 435-457, April.
- Georgios Chortareas & George Kapetanios, 2004. "How Puzzling is the PPP Puzzle? An Alternative Half-Life Measure of Convergence to PPP," Working Papers 522, Queen Mary University of London, School of Economics and Finance.
- Georgios Chortareas & George Kapetanios, 2005. "How Puzzling is the PPP Puzzle? An Alternative Half-Life Measure of convergence to PPP," Money Macro and Finance (MMF) Research Group Conference 2005 36, Money Macro and Finance Research Group.
- Georgios Chortareas & George Kapetanios, 2004. "How Puzzling is the PPP Puzzle? An Alternative Half-Life Measure of Convergence to PPP," Working Papers 522, Queen Mary University of London, School of Economics and Finance.
- Wouter J. Den Haan & Andrew T. Levin, 1995.
"Inferences from parametric and non-parametric covariance matrix estimation procedures,"
International Finance Discussion Papers
504, Board of Governors of the Federal Reserve System (U.S.).
- Wouter J. Den Haan & Andrew Levin, 1996. "Inferences from Parametric and Non-Parametric Covariance Matrix Estimation Procedures," NBER Technical Working Papers 0195, National Bureau of Economic Research, Inc.
- DUFOUR, Jean-Marie & TAREK, Jouini, 2005.
"Asymptotic Distribution of a Simple Linear Estimator for VARMA Models in Echelon Form,"
Cahiers de recherche
2005-09, Universite de Montreal, Departement de sciences economiques.
- DUFOUR, Jean-Marie & JOUINI, Tarek, 2005. "Asymptotic Distribution of a Simple Linear Estimator for VARMA Models in Echelon Form," Cahiers de recherche 10-2005, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
- Jean-Marie Dufour & Tarek Jouini, 2005. "Asymptotic distribution of a simple linear estimator for VARMA models in echelon form," CIRANO Working Papers 2005s-06, CIRANO.
- Zhu, Yunyi & Xie, Bin & Wang, Anqi & Qian, Zheng, 2025. "Wind turbine fault detection and identification via self-attention-based dynamic graph representation learning and variable-level normalizing flow," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
- Ook Lee & Hanseon Joo & Hayoung Choi & Minjong Cheon, 2022. "Proposing an Integrated Approach to Analyzing ESG Data via Machine Learning and Deep Learning Algorithms," Sustainability, MDPI, vol. 14(14), pages 1-14, July.
- Wang, Chao & Lin, Hong & Yang, Ming & Fu, Xiaoling & Yuan, Yue & Wang, Zewei, 2024. "A novel chaotic time series wind power point and interval prediction method based on data denoising strategy and improved coati optimization algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
- Chen, Bingyang & Zeng, Xingjie & Zhang, Weishan & Fan, Lulu & Cao, Shaohua & Zhou, Jiehan, 2023. "Knowledge sharing-based multi-block federated learning for few-shot oil layer identification," Energy, Elsevier, vol. 283(C).
- Esangbedo, Moses Olabhele & Taiwo, Blessing Olamide & Abbas, Hawraa H. & Hosseini, Shahab & Sazid, Mohammed & Fissha, Yewuhalashet, 2024. "Enhancing the exploitation of natural resources for green energy: An application of LSTM-based meta-model for aluminum prices forecasting," Resources Policy, Elsevier, vol. 92(C).
- Alessandro Murgia & Robbert Verbeke & Elena Tsiporkova & Ludovico Terzi & Davide Astolfi, 2023. "Discussion on the Suitability of SCADA-Based Condition Monitoring for Wind Turbine Fault Diagnosis through Temperature Data Analysis," Energies, MDPI, vol. 16(2), pages 1-20, January.
- Yang, Mao & Wang, Da & Zhang, Wei & Yv, Xinnan, 2024. "A centralized power prediction method for large-scale wind power clusters based on dynamic graph neural network," Energy, Elsevier, vol. 310(C).
- Yamaç, Sevim Seda, 2021. "Artificial intelligence methods reliably predict crop evapotranspiration with different combinations of meteorological data for sugar beet in a semiarid area," Agricultural Water Management, Elsevier, vol. 254(C).
- repec:cdl:ucsdec:96-17 is not listed on IDEAS
- Lv, Yunlong & Hu, Qin & Xu, Hang & Lin, Huiyao & Wu, Yufan, 2024. "An ultra-short-term wind power prediction method based on spatial-temporal attention graph convolutional model," Energy, Elsevier, vol. 293(C).
- Franke Jürgen & Kreiss Jens-Peter & Moser Martin, 2006. "Bootstrap autoregressive order selection," Statistics & Risk Modeling, De Gruyter, vol. 24(3), pages 305-325, December.
- Vladimir Franki & Darin Majnarić & Alfredo Višković, 2023. "A Comprehensive Review of Artificial Intelligence (AI) Companies in the Power Sector," Energies, MDPI, vol. 16(3), pages 1-35, January.
- Phong B. Dao, 2023. "On Cointegration Analysis for Condition Monitoring and Fault Detection of Wind Turbines Using SCADA Data," Energies, MDPI, vol. 16(5), pages 1-17, March.
More about this item
Keywords
renewable energy sources; wind power prediction; transformer; Mamba;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1155-:d:1600496. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.