IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i3p689-d1582332.html
   My bibliography  Save this article

The Impact of Integrating Variable Renewable Energy Sources into Grid-Connected Power Systems: Challenges, Mitigation Strategies, and Prospects

Author

Listed:
  • Emmanuel Ejuh Che

    (Department of Electrical and Electronic Engineering, Faculty of Engineering and Technology, University of Buea, Buea P.O. Box 63, Cameroon
    Department of Electrical and Electronics Engineering, Faculty of Engineering and Technology, University of West Attica, Ancient Grove Campus 250, Thivon Ave., GR-12241 Athens Egaleo, Greece)

  • Kang Roland Abeng

    (Department of Electrical and Electronic Engineering, Faculty of Engineering and Technology, University of Buea, Buea P.O. Box 63, Cameroon
    Department of Electrical and Electronics Engineering, Faculty of Engineering and Technology, University of West Attica, Ancient Grove Campus 250, Thivon Ave., GR-12241 Athens Egaleo, Greece)

  • Chu Donatus Iweh

    (Department of Renewable Energy Technology, College of Technology, University of Bamenda, Bambili P.O. Box 39, Cameroon)

  • George J. Tsekouras

    (Department of Electrical and Electronics Engineering, Faculty of Engineering and Technology, University of West Attica, Ancient Grove Campus 250, Thivon Ave., GR-12241 Athens Egaleo, Greece)

  • Armand Fopah-Lele

    (Department of Mechanical and Industrial Engineering, Faculty of Engineering and Technology, University of Buea, Buea P.O. Box 63, Cameroon)

Abstract

Although the impact of integrating solar and wind sources into the power system has been studied in the past, the chaos caused by wind and solar energy generation has not yet had broader mitigation solutions notwithstanding their rapid deployment. Many research efforts in using prediction models have developed real-time monitoring of variability and machine learning predictive algorithms in contrast to the conventional methods of studying variability. This study focused on the causes and types of variability, challenges, and mitigation strategies used to minimize variability in grids worldwide. A summary of the top ten cases of countries that have successfully managed variability in their electrical power grids has been presented. Review shows that most of the success cases embraced advanced energy storage, grid upgrading, and flexible energy mix as key technological and economic strategies. A seven-point conceptual framework involving all energy stakeholders for managing variability in power system networks and increasing variable renewable energy (VRE)-grid integration has been proposed. Long-duration energy storage, virtual power plants (VPPs), smart grid infrastructure, cross-border interconnection, power-to-X, and grid flexibility are the key takeaways in achieving a reliable, resilient, and stable grid. This review provides a useful summary of up-to-date research information for researchers and industries investing in a renewable energy-intensive grid.

Suggested Citation

  • Emmanuel Ejuh Che & Kang Roland Abeng & Chu Donatus Iweh & George J. Tsekouras & Armand Fopah-Lele, 2025. "The Impact of Integrating Variable Renewable Energy Sources into Grid-Connected Power Systems: Challenges, Mitigation Strategies, and Prospects," Energies, MDPI, vol. 18(3), pages 1-31, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:689-:d:1582332
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/3/689/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/3/689/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rita Teixeira & Adelaide Cerveira & Eduardo J. Solteiro Pires & José Baptista, 2024. "Advancing Renewable Energy Forecasting: A Comprehensive Review of Renewable Energy Forecasting Methods," Energies, MDPI, vol. 17(14), pages 1-30, July.
    2. Jiaqi Liu & Hongji Hu & Samson S. Yu & Hieu Trinh, 2023. "Virtual Power Plant with Renewable Energy Sources and Energy Storage Systems for Sustainable Power Grid-Formation, Control Techniques and Demand Response," Energies, MDPI, vol. 16(9), pages 1-28, April.
    3. Pampa Sinha & Kaushik Paul & Sanchari Deb & Sulabh Sachan, 2023. "Comprehensive Review Based on the Impact of Integrating Electric Vehicle and Renewable Energy Sources to the Grid," Energies, MDPI, vol. 16(6), pages 1-39, March.
    4. Carlos Arturo Cárdenas Guerra & Adalberto José Ospino Castro & Rafael Peña Gallardo, 2023. "Analysis of the Impact of Integrating Variable Renewable Energy into the Power System in the Colombian Caribbean Region," Energies, MDPI, vol. 16(21), pages 1-16, October.
    5. Ekata Kaushik & Vivek Prakash & Om Prakash Mahela & Baseem Khan & Adel El-Shahat & Almoataz Y. Abdelaziz, 2022. "Comprehensive Overview of Power System Flexibility during the Scenario of High Penetration of Renewable Energy in Utility Grid," Energies, MDPI, vol. 15(2), pages 1-29, January.
    6. Huclin, Sébastien & Ramos, Andrés & Chaves, José Pablo & Matanza, Javier & González-Eguino, Mikel, 2023. "A methodological approach for assessing flexibility and capacity value in renewable-dominated power systems: A Spanish case study in 2030," Energy, Elsevier, vol. 285(C).
    7. Denis Juma & Josiah Munda & Charles Kabiri, 2023. "Power-System Flexibility: A Necessary Complement to Variable Renewable Energy Optimal Capacity Configuration," Energies, MDPI, vol. 16(21), pages 1-24, November.
    8. Ahmed, Faraedoon & Al Kez, Dlzar & McLoone, Seán & Best, Robert James & Cameron, Ché & Foley, Aoife, 2023. "Dynamic grid stability in low carbon power systems with minimum inertia," Renewable Energy, Elsevier, vol. 210(C), pages 486-506.
    9. Sulman Shahzad & Elżbieta Jasińska, 2024. "Renewable Revolution: A Review of Strategic Flexibility in Future Power Systems," Sustainability, MDPI, vol. 16(13), pages 1-24, June.
    10. Xu, Tingting & Gao, Weijun & Qian, Fanyue & Li, Yanxue, 2022. "The implementation limitation of variable renewable energies and its impacts on the public power grid," Energy, Elsevier, vol. 239(PA).
    11. Latifa A. Yousef & Hibba Yousef & Lisandra Rocha-Meneses, 2023. "Artificial Intelligence for Management of Variable Renewable Energy Systems: A Review of Current Status and Future Directions," Energies, MDPI, vol. 16(24), pages 1-27, December.
    12. Martínez-Martínez, Yenisleidy & Dewulf, Jo & Casas-Ledón, Yannay, 2022. "GIS-based site suitability analysis and ecosystem services approach for supporting renewable energy development in south-central Chile," Renewable Energy, Elsevier, vol. 182(C), pages 363-376.
    13. Muhammed Y. Worku, 2022. "Recent Advances in Energy Storage Systems for Renewable Source Grid Integration: A Comprehensive Review," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    14. Widén, Joakim & Carpman, Nicole & Castellucci, Valeria & Lingfors, David & Olauson, Jon & Remouit, Flore & Bergkvist, Mikael & Grabbe, Mårten & Waters, Rafael, 2015. "Variability assessment and forecasting of renewables: A review for solar, wind, wave and tidal resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 356-375.
    15. Seon Young Jang & Byung Tae Oh & Eunsung Oh, 2024. "A Deep Learning-Based Solar Power Generation Forecasting Method Applicable to Multiple Sites," Sustainability, MDPI, vol. 16(12), pages 1-15, June.
    16. Fang, Yuchen & Han, Jianpei & Du, Ershun & Jiang, Haiyang & Fang, Yujuan & Zhang, Ning & Kang, Chongqing, 2024. "Electric energy system planning considering chronological renewable generation variability and uncertainty," Applied Energy, Elsevier, vol. 373(C).
    17. Jože Dimnik & Jelena Topić Božič & Ante Čikić & Simon Muhič, 2024. "Impacts of High PV Penetration on Slovenia’s Electricity Grid: Energy Modeling and Life Cycle Assessment," Energies, MDPI, vol. 17(13), pages 1-17, June.
    18. Kyo Beom Han & Jaesung Jung & Byung O Kang, 2021. "Real-Time Load Variability Control Using Energy Storage System for Demand-Side Management in South Korea," Energies, MDPI, vol. 14(19), pages 1-17, October.
    19. Gao, Hongchao & Jin, Tai & Feng, Cheng & Li, Chuyi & Chen, Qixin & Kang, Chongqing, 2024. "Review of virtual power plant operations: Resource coordination and multidimensional interaction," Applied Energy, Elsevier, vol. 357(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weigang Jin & Peihua Wang & Jiaxin Yuan, 2024. "Key Role and Optimization Dispatch Research of Technical Virtual Power Plants in the New Energy Era," Energies, MDPI, vol. 17(22), pages 1-24, November.
    2. Fan Li & Hongzhen Wang & Dong Liu & Ke Sun, 2025. "A Review of Multi-Temporal Scale Regulation Requirements of Power Systems and Diverse Flexible Resource Applications," Energies, MDPI, vol. 18(3), pages 1-32, January.
    3. Chenmin He & Kejun Jiang & Pianpian Xiang & Yujie Jiao & Mingzhu Li, 2025. "Electricity Demand Characteristics in the Energy Transition Pathway Under the Carbon Neutrality Goal for China," Sustainability, MDPI, vol. 17(4), pages 1-16, February.
    4. Hasanien, Hany M. & Alsaleh, Ibrahim & Alassaf, Abdullah, 2024. "Impact of electric vehicles and wave energy systems on OPF of power networks using hybrid Osprey-PSO approach," Energy, Elsevier, vol. 308(C).
    5. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    6. Eid Gul & Giorgio Baldinelli & Pietro Bartocci, 2022. "Energy Transition: Renewable Energy-Based Combined Heat and Power Optimization Model for Distributed Communities," Energies, MDPI, vol. 15(18), pages 1-18, September.
    7. Oluwafemi Emmanuel Oni & Omowunmi Mary Longe, 2023. "Analysis of Secondary Controller on MTDC Link with Solar PV Integration for Inter-Area Power Oscillation Damping," Energies, MDPI, vol. 16(17), pages 1-18, August.
    8. Feras Alasali & Mohammad Salameh & Ali Semrin & Khaled Nusair & Naser El-Naily & William Holderbaum, 2022. "Optimal Controllers and Configurations of 100% PV and Energy Storage Systems for a Microgrid: The Case Study of a Small Town in Jordan," Sustainability, MDPI, vol. 14(13), pages 1-20, July.
    9. Duan, Fude & Bu, Xiongzhu, 2024. "Stochastic optimization of a hybrid photovoltaic/fuel cell/parking lot system incorporating cloud model," Renewable Energy, Elsevier, vol. 237(PC).
    10. Sergio Cantillo-Luna & Ricardo Moreno-Chuquen & David Celeita & George J. Anders, 2024. "A Stochastic Decision-Making Tool Suite for Distributed Energy Resources Integration in Energy Markets," Energies, MDPI, vol. 17(10), pages 1-28, May.
    11. Deng, Xu & Lv, Tao & Meng, Xiangyun & Li, Cong & Hou, Xiaoran & Xu, Jie & Wang, Yinhao & Liu, Feng, 2024. "Assessing the carbon emission reduction effect of flexibility option for integrating variable renewable energy," Energy Economics, Elsevier, vol. 132(C).
    12. Hussain, C.M. Iftekhar & Norton, Brian & Duffy, Aidan, 2017. "Technological assessment of different solar-biomass systems for hybrid power generation in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1115-1129.
    13. Kalyani Makarand Kurundkar & Geetanjali Abhijit Vaidya, 2023. "Stochastic Security-Constrained Economic Dispatch of Load-Following and Contingency Reserves Ancillary Service Using a Grid-Connected Microgrid during Uncertainty," Energies, MDPI, vol. 16(6), pages 1-25, March.
    14. Elsinga, Boudewijn & van Sark, Wilfried G.J.H.M., 2017. "Short-term peer-to-peer solar forecasting in a network of photovoltaic systems," Applied Energy, Elsevier, vol. 206(C), pages 1464-1483.
    15. Alain Aoun & Mehdi Adda & Adrian Ilinca & Mazen Ghandour & Hussein Ibrahim, 2024. "Optimizing Virtual Power Plant Management: A Novel MILP Algorithm to Minimize Levelized Cost of Energy, Technical Losses, and Greenhouse Gas Emissions," Energies, MDPI, vol. 17(16), pages 1-23, August.
    16. Ricardo Raineri, 2025. "Power Shift: Decarbonization and the New Dynamics of Energy Markets," Energies, MDPI, vol. 18(3), pages 1-52, February.
    17. Fatemeh Marzbani & Akmal Abdelfatah, 2024. "Economic Dispatch Optimization Strategies and Problem Formulation: A Comprehensive Review," Energies, MDPI, vol. 17(3), pages 1-31, January.
    18. Yanqian Li & Yanlai Zhou & Yuxuan Luo & Zhihao Ning & Chong-Yu Xu, 2024. "Boosting the Development and Management of Wind Energy: Self-Organizing Map Neural Networks for Clustering Wind Power Outputs," Energies, MDPI, vol. 17(21), pages 1-15, November.
    19. Prasad, Abhnil A. & Taylor, Robert A. & Kay, Merlinde, 2017. "Assessment of solar and wind resource synergy in Australia," Applied Energy, Elsevier, vol. 190(C), pages 354-367.
    20. Richard P. van Leeuwen & Annelies E. Boerman & Edmund W. Schaefer & Gerwin Hoogsteen & Yashar S. Hajimolana, 2022. "Model Supported Business Case Scenario Analysis for Decentral Hydrogen Conversion, Storage and Consumption within Energy Hubs," Energies, MDPI, vol. 15(6), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:689-:d:1582332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.