IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i21p7260-d1267413.html
   My bibliography  Save this article

Analysis of the Impact of Integrating Variable Renewable Energy into the Power System in the Colombian Caribbean Region

Author

Listed:
  • Carlos Arturo Cárdenas Guerra

    (Departamento de Energía, Universidad de la Costa, Barranquilla 080002, Colombia)

  • Adalberto José Ospino Castro

    (Departamento de Energía, Universidad de la Costa, Barranquilla 080002, Colombia)

  • Rafael Peña Gallardo

    (Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78290, Mexico)

Abstract

This paper compares the effects of adding solar and wind power to the power system of Colombia’s Caribbean region and its connections to the National Interconnected System. A base scenario was simulated in the PowerFactory 2003 software considering the actual data of the power system in 2023, and then, they were compared with the results obtained for 2033, considering the growth of the network and the addition of new power plants based on variable renewable energy. The comparison analyzes the impact of the newly added renewable energy in the power system on the voltage stability and system frequency. The results obtained show that the addition of new variable renewable energy plants generates voltage fluctuations in the lower voltage levels, ranging from 1% to 3.1%, which indicates potential challenges in maintaining the voltage stability. In higher voltages, no significant variations were found. Regarding the system frequency, the transient value tends to increase but is within the regulatory range, with variations of less than 0.2 Hz.

Suggested Citation

  • Carlos Arturo Cárdenas Guerra & Adalberto José Ospino Castro & Rafael Peña Gallardo, 2023. "Analysis of the Impact of Integrating Variable Renewable Energy into the Power System in the Colombian Caribbean Region," Energies, MDPI, vol. 16(21), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7260-:d:1267413
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/21/7260/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/21/7260/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mararakanye, Ndamulelo & Bekker, Bernard, 2019. "Renewable energy integration impacts within the context of generator type, penetration level and grid characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 441-451.
    2. Sylwester Robak & Robert Raczkowski & Michał Piekarz, 2023. "Development of the Wind Generation Sector and Its Effect on the Grid Operation—The Case of Poland," Energies, MDPI, vol. 16(19), pages 1-16, September.
    3. Pupo-Roncallo, Oscar & Campillo, Javier & Ingham, Derek & Hughes, Kevin & Pourkashanian, Mohammed, 2019. "Large scale integration of renewable energy sources (RES) in the future Colombian energy system," Energy, Elsevier, vol. 186(C).
    4. Hamad Hussain Shah & Piero Bareschino & Erasmo Mancusi & Francesco Pepe, 2023. "Environmental Life Cycle Analysis and Energy Payback Period Evaluation of Solar PV Systems: The Case of Pakistan," Energies, MDPI, vol. 16(17), pages 1-24, September.
    5. Jin, Baohong, 2023. "Impact of renewable energy penetration in power systems on the optimization and operation of regional distributed energy systems," Energy, Elsevier, vol. 273(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Okonkwo, Eric C. & Wole-Osho, Ifeoluwa & Bamisile, Olusola & Abid, Muhammad & Al-Ansari, Tareq, 2021. "Grid integration of renewable energy in Qatar: Potentials and limitations," Energy, Elsevier, vol. 235(C).
    2. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Luo, Shihua & Hu, Weihao & Liu, Wen & Liu, Zhou & Huang, Qi & Chen, Zhe, 2022. "Flexibility enhancement measures under the COVID-19 pandemic – A preliminary comparative analysis in Denmark, the Netherlands, and Sichuan of China," Energy, Elsevier, vol. 239(PC).
    4. Machado, Renato Haddad Simões & Rego, Erik Eduardo & Udaeta, Miguel Edgar Morales & Nascimento, Viviane Tavares, 2022. "Estimating the adequacy revenue considering long-term reliability in a renewable power system," Energy, Elsevier, vol. 243(C).
    5. Muhammad Anique Aslam & Syed Abdul Rahman Kashif & Muhammad Majid Gulzar & Mohammed Alqahtani & Muhammad Khalid, 2023. "A Novel Multi Level Dynamic Decomposition Based Coordinated Control of Electric Vehicles in Multimicrogrids," Sustainability, MDPI, vol. 15(16), pages 1-29, August.
    6. Icaza-Alvarez, Daniel & Jurado, Francisco & Tostado-Véliz, Marcos & Arevalo, Paúl, 2022. "Decarbonization of the Galapagos Islands. Proposal to transform the energy system into 100% renewable by 2050," Renewable Energy, Elsevier, vol. 189(C), pages 199-220.
    7. Stefania Betancur & Naghelli Ortega-Avila & Erick César López-Vidaña, 2023. "Strengths, Weaknesses, Opportunities, and Threats Analysis for the Strengthening of Solar Thermal Energy in Colombia," Resources, MDPI, vol. 13(1), pages 1-21, December.
    8. Tina, Giuseppe Marco & Aneli, Stefano & Gagliano, Antonio, 2022. "Technical and economic analysis of the provision of ancillary services through the flexibility of HVAC system in shopping centers," Energy, Elsevier, vol. 258(C).
    9. Arévalo, Paúl & Cano, Antonio & Jurado, Francisco, 2022. "Mitigation of carbon footprint with 100% renewable energy system by 2050: The case of Galapagos islands," Energy, Elsevier, vol. 245(C).
    10. Damian Hasterok & Rui Castro & Marcin Landrat & Krzysztof Pikoń & Markus Doepfert & Hugo Morais, 2021. "Polish Energy Transition 2040: Energy Mix Optimization Using Grey Wolf Optimizer," Energies, MDPI, vol. 14(2), pages 1-27, January.
    11. Iraj Faraji Davoudkhani & Farhad Zishan & Saeedeh Mansouri & Farzad Abdollahpour & Luis Fernando Grisales-Noreña & Oscar Danilo Montoya, 2023. "Allocation of Renewable Energy Resources in Distribution Systems While Considering the Uncertainty of Wind and Solar Resources via the Multi-Objective Salp Swarm Algorithm," Energies, MDPI, vol. 16(1), pages 1-17, January.
    12. Pampa Sinha & Kaushik Paul & Sanchari Deb & Sulabh Sachan, 2023. "Comprehensive Review Based on the Impact of Integrating Electric Vehicle and Renewable Energy Sources to the Grid," Energies, MDPI, vol. 16(6), pages 1-39, March.
    13. Tanoto, Yusak & Haghdadi, Navid & Bruce, Anna & MacGill, Iain, 2021. "Reliability-cost trade-offs for electricity industry planning with high variable renewable energy penetrations in emerging economies: A case study of Indonesia’s Java-Bali grid," Energy, Elsevier, vol. 227(C).
    14. Ahmed Younis & René Benders & Jezabel Ramírez & Merlijn de Wolf & André Faaij, 2022. "Scrutinizing the Intermittency of Renewable Energy in a Long-Term Planning Model via Combining Direct Integration and Soft-Linking Methods for Colombia’s Power System," Energies, MDPI, vol. 15(20), pages 1-24, October.
    15. Meha, Drilon & Pfeifer, Antun & Sahiti, Naser & Rolph Schneider, Daniel & Duić, Neven, 2021. "Sustainable transition pathways with high penetration of variable renewable energy in the coal-based energy systems," Applied Energy, Elsevier, vol. 304(C).
    16. Zhang, Kezhen & Liu, Ming & Zhao, Yongliang & Wang, Chaoyang & Yan, Junjie, 2020. "Entropy generation versus transition time of heat exchanger during transient processes," Energy, Elsevier, vol. 200(C).
    17. Arévalo, Paul & Cano, Antonio & Jurado, Francisco, 2024. "Large-scale integration of renewable energies by 2050 through demand prediction with ANFIS, Ecuador case study," Energy, Elsevier, vol. 286(C).
    18. Vasudevan, Krishnakumar R. & Ramachandaramurthy, Vigna K. & Venugopal, Gomathi & Ekanayake, J.B. & Tiong, S.K., 2021. "Variable speed pumped hydro storage: A review of converters, controls and energy management strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    19. Fabrizio De Caro & Jacopo De Stefani & Gianluca Bontempi & Alfredo A. Vaccaro & Domenico D. Villacci, 2020. "Robust Assessment of Short-Term Wind Power Forecasting Models on Multiple Time Horizons," ULB Institutional Repository 2013/314435, ULB -- Universite Libre de Bruxelles.
    20. Xiong, Yongkang & Zeng, Zhenfeng & Xin, Jianbo & Song, Guanhong & Xia, Yonghong & Xu, Zaide, 2023. "Renewable energy time series regulation strategy considering grid flexible load and N-1 faults," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7260-:d:1267413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.