IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v125y2018icp518-528.html
   My bibliography  Save this article

Experimental and numerical investigation on wave height and power take–off damping effects on the hydrodynamic performance of an offshore–stationary OWC wave energy converter

Author

Listed:
  • Elhanafi, Ahmed
  • Kim, Chan Joo

Abstract

Wave energy is a viable source of ocean renewable energy and research is being conducted worldwide. The Oscillating Water Column (OWC) device is recognised internationally as one of the most promising types of ocean Wave Energy Converters (WECs). To effectively utilize ocean waves for harvesting more energy, offshore OWC devices need to be deployed in deep–water where waves are more energetic. Therefore, the present paper experimentally investigated the hydrodynamic performance of a 3D offshore–stationary OWC device subjected to a wide range of regular wave conditions of different periods and heights and nonlinear power take–off (PTO) damping conditions simulated by an orifice. The experimental results were also employed to validate a 3D incompressible Computational Fluid Dynamics (CFD) model based on the RANS–VOF approach. It was found that the device capture width ratio decreased as wave height increased, especially for wave frequencies higher than device resonance frequency. However, for low–frequency waves under small PTO damping, there was a noticeable improvement in the device capture width ratio. More importantly, results of this study revealed that even with the changes in the device capture width ratio as wave height doubled, the OWC device could extract more wave energy throughout the whole frequency range tested by a maximum of about 7.7 times, particularly for long waves under small PTO damping. Furthermore, the numerical results from the 3D CFD model were in good agreement with the experiments, while the 2D model provided misleading (overestimating) results for high–frequency waves.

Suggested Citation

  • Elhanafi, Ahmed & Kim, Chan Joo, 2018. "Experimental and numerical investigation on wave height and power take–off damping effects on the hydrodynamic performance of an offshore–stationary OWC wave energy converter," Renewable Energy, Elsevier, vol. 125(C), pages 518-528.
  • Handle: RePEc:eee:renene:v:125:y:2018:i:c:p:518-528
    DOI: 10.1016/j.renene.2018.02.131
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118302830
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.02.131?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. López, I. & Pereiras, B. & Castro, F. & Iglesias, G., 2014. "Optimisation of turbine-induced damping for an OWC wave energy converter using a RANS–VOF numerical model," Applied Energy, Elsevier, vol. 127(C), pages 105-114.
    2. Babarit, A., 2015. "A database of capture width ratio of wave energy converters," Renewable Energy, Elsevier, vol. 80(C), pages 610-628.
    3. Reguero, B.G. & Losada, I.J. & Méndez, F.J., 2015. "A global wave power resource and its seasonal, interannual and long-term variability," Applied Energy, Elsevier, vol. 148(C), pages 366-380.
    4. Elhanafi, Ahmed & Fleming, Alan & Macfarlane, Gregor & Leong, Zhi, 2017. "Underwater geometrical impact on the hydrodynamic performance of an offshore oscillating water column–wave energy converter," Renewable Energy, Elsevier, vol. 105(C), pages 209-231.
    5. Ning, De-Zhi & Wang, Rong-Quan & Zou, Qing-Ping & Teng, Bin, 2016. "An experimental investigation of hydrodynamics of a fixed OWC Wave Energy Converter," Applied Energy, Elsevier, vol. 168(C), pages 636-648.
    6. Zhang, Yali & Zou, Qing-Ping & Greaves, Deborah, 2012. "Air–water two-phase flow modelling of hydrodynamic performance of an oscillating water column device," Renewable Energy, Elsevier, vol. 41(C), pages 159-170.
    7. Ning, De-Zhi & Shi, Jin & Zou, Qing-Ping & Teng, Bin, 2015. "Investigation of hydrodynamic performance of an OWC (oscillating water column) wave energy device using a fully nonlinear HOBEM (higher-order boundary element method)," Energy, Elsevier, vol. 83(C), pages 177-188.
    8. Vyzikas, Thomas & Deshoulières, Samy & Giroux, Olivier & Barton, Matthew & Greaves, Deborah, 2017. "Numerical study of fixed Oscillating Water Column with RANS-type two-phase CFD model," Renewable Energy, Elsevier, vol. 102(PB), pages 294-305.
    9. Luo, Yongyao & Nader, Jean-Roch & Cooper, Paul & Zhu, Song-Ping, 2014. "Nonlinear 2D analysis of the efficiency of fixed Oscillating Water Column wave energy converters," Renewable Energy, Elsevier, vol. 64(C), pages 255-265.
    10. Elhanafi, Ahmed & Fleming, Alan & Macfarlane, Gregor & Leong, Zhi, 2016. "Numerical energy balance analysis for an onshore oscillating water column–wave energy converter," Energy, Elsevier, vol. 116(P1), pages 539-557.
    11. Fang He & Mingjia Li & Zhenhua Huang, 2016. "An Experimental Study of Pile-Supported OWC-Type Breakwaters: Energy Extraction and Vortex-Induced Energy Loss," Energies, MDPI, vol. 9(7), pages 1-15, July.
    12. Elhanafi, Ahmed & Macfarlane, Gregor & Fleming, Alan & Leong, Zhi, 2017. "Scaling and air compressibility effects on a three-dimensional offshore stationary OWC wave energy converter," Applied Energy, Elsevier, vol. 189(C), pages 1-20.
    13. Vyzikas, Thomas & Deshoulières, Samy & Barton, Matthew & Giroux, Olivier & Greaves, Deborah & Simmonds, Dave, 2017. "Experimental investigation of different geometries of fixed oscillating water column devices," Renewable Energy, Elsevier, vol. 104(C), pages 248-258.
    14. Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O. & Robles, E. & Faÿ, F.-X., 2016. "Latching control of a floating oscillating-water-column wave energy converter," Renewable Energy, Elsevier, vol. 90(C), pages 229-241.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gubesch, Eric & Abdussamie, Nagi & Penesis, Irene & Chin, Christopher, 2022. "Maximising the hydrodynamic performance of offshore oscillating water column wave energy converters," Applied Energy, Elsevier, vol. 308(C).
    2. Shahabi-Nejad, Meysam & Nikseresht, Amir H., 2022. "A comprehensive investigation of a hybrid wave energy converter including oscillating water column and horizontal floating cylinder," Energy, Elsevier, vol. 243(C).
    3. Tomás Cabral & Daniel Clemente & Paulo Rosa-Santos & Francisco Taveira-Pinto & Tiago Morais & Filipe Belga & Henrique Cestaro, 2020. "Performance Assessment of a Hybrid Wave Energy Converter Integrated into a Harbor Breakwater," Energies, MDPI, vol. 13(1), pages 1-22, January.
    4. Luana Gurnari & Pasquale G. F. Filianoti & Marco Torresi & Sergio M. Camporeale, 2020. "The Wave-to-Wire Energy Conversion Process for a Fixed U-OWC Device," Energies, MDPI, vol. 13(1), pages 1-25, January.
    5. Jianxing Yu & Zhenmian Li & Yang Yu & Shuai Hao & Yiqin Fu & Yupeng Cui & Lixin Xu & Han Wu, 2020. "Design and Performance Assessment of Multi-Use Offshore Tension Leg Platform Equipped with an Embedded Wave Energy Converter System," Energies, MDPI, vol. 13(15), pages 1-21, August.
    6. Sun, Pengyuan & Liu, Senming & He, Hongzhou & Zhao, Yingru & Zheng, Songgen & Chen, Hu & Yang, Shaohui, 2021. "Simulated and experimental investigation of a floating-array-buoys wave energy converter with single-point mooring," Renewable Energy, Elsevier, vol. 176(C), pages 637-650.
    7. Didier, Eric & Teixeira, Paulo R.F., 2024. "Numerical analysis of 3D hydrodynamics and performance of an array of oscillating water column wave energy converters integrated into a vertical breakwater," Renewable Energy, Elsevier, vol. 225(C).
    8. Elhanafi, Ahmed & Macfarlane, Gregor & Ning, Dezhi, 2018. "Hydrodynamic performance of single–chamber and dual–chamber offshore–stationary Oscillating Water Column devices using CFD," Applied Energy, Elsevier, vol. 228(C), pages 82-96.
    9. Teixeira, Paulo R.F. & Didier, Eric, 2021. "Numerical analysis of the response of an onshore oscillating water column wave energy converter to random waves," Energy, Elsevier, vol. 220(C).
    10. Chen Wang & Zhengzhi Deng & Pinjie Wang & Yu Yao, 2019. "Wave Power Extraction from a Dual Oscillating-Water- Column System Composed of Heave-Only and Onshore Units," Energies, MDPI, vol. 12(9), pages 1-22, May.
    11. Zhao, Ming & Ning, Dezhi, 2024. "A review of numerical methods for studying hydrodynamic performance of oscillating water column (OWC) devices," Renewable Energy, Elsevier, vol. 233(C).
    12. Huang, Weinan & Dong, Sheng, 2021. "Improved short-term prediction of significant wave height by decomposing deterministic and stochastic components," Renewable Energy, Elsevier, vol. 177(C), pages 743-758.
    13. Liu, Zhen & Xu, Chuanli & Kim, Kilwon & Li, Ming, 2022. "Experimental study on the overall performance of a model OWC system under the free-spinning mode in irregular waves," Energy, Elsevier, vol. 250(C).
    14. Hsien Hua Lee & Cheng-Han Chen, 2020. "Parametric Study for an Oscillating Water Column Wave Energy Conversion System Installed on a Breakwater," Energies, MDPI, vol. 13(8), pages 1-22, April.
    15. Zhou, Yu & Chen, Lifen & Zhao, Jie & Liu, Xiangjian & Ye, Xiaorong & Wang, Fei & Adcock, Thomas A.A. & Ning, Dezhi, 2023. "Power and dynamic performance of a floating multi-functional platform: An experimental study," Energy, Elsevier, vol. 285(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elhanafi, Ahmed & Macfarlane, Gregor & Fleming, Alan & Leong, Zhi, 2017. "Experimental and numerical investigations on the hydrodynamic performance of a floating–moored oscillating water column wave energy converter," Applied Energy, Elsevier, vol. 205(C), pages 369-390.
    2. Elhanafi, Ahmed & Macfarlane, Gregor & Ning, Dezhi, 2018. "Hydrodynamic performance of single–chamber and dual–chamber offshore–stationary Oscillating Water Column devices using CFD," Applied Energy, Elsevier, vol. 228(C), pages 82-96.
    3. Zhao, Ming & Ning, Dezhi, 2024. "A review of numerical methods for studying hydrodynamic performance of oscillating water column (OWC) devices," Renewable Energy, Elsevier, vol. 233(C).
    4. Kharati-Koopaee, Masoud & Fathi-Kelestani, Arman, 2020. "Assessment of oscillating water column performance: Influence of wave steepness at various chamber lengths and bottom slopes," Renewable Energy, Elsevier, vol. 147(P1), pages 1595-1608.
    5. Simonetti, I. & Cappietti, L. & Elsafti, H. & Oumeraci, H., 2017. "Optimization of the geometry and the turbine induced damping for fixed detached and asymmetric OWC devices: A numerical study," Energy, Elsevier, vol. 139(C), pages 1197-1209.
    6. Mia, Mohammad Rashed & Zhao, Ming & Wu, Helen & Munir, Adnan, 2021. "Numerical investigation of scaling effect in two-dimensional oscillating water column wave energy devices for harvesting wave energy," Renewable Energy, Elsevier, vol. 178(C), pages 1381-1397.
    7. Mia, Mohammad Rashed & Zhao, Ming & Wu, Helen & Munir, Adnan, 2022. "Numerical investigation of offshore oscillating water column devices," Renewable Energy, Elsevier, vol. 191(C), pages 380-393.
    8. Windt, Christian & Davidson, Josh & Ringwood, John V., 2018. "High-fidelity numerical modelling of ocean wave energy systems: A review of computational fluid dynamics-based numerical wave tanks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 610-630.
    9. Chen, Jing & Wen, Hongjie & Wang, Yongxue & Wang, Guoyu, 2021. "A correlation study of optimal chamber width with the relative front wall draught of onshore OWC device," Energy, Elsevier, vol. 225(C).
    10. Çelik, Anıl & Altunkaynak, Abdüsselam, 2021. "An in depth experimental investigation into effects of incident wave characteristics front wall opening and PTO damping on the water column displacement and air differential pressure in an OWC chamber," Energy, Elsevier, vol. 230(C).
    11. Xu, Conghao & Huang, Zhenhua, 2018. "A dual-functional wave-power plant for wave-energy extraction and shore protection: A wave-flume study," Applied Energy, Elsevier, vol. 229(C), pages 963-976.
    12. Wang, Rong-quan & Ning, De-zhi, 2020. "Dynamic analysis of wave action on an OWC wave energy converter under the influence of viscosity," Renewable Energy, Elsevier, vol. 150(C), pages 578-588.
    13. Elhanafi, Ahmed & Fleming, Alan & Macfarlane, Gregor & Leong, Zhi, 2017. "Underwater geometrical impact on the hydrodynamic performance of an offshore oscillating water column–wave energy converter," Renewable Energy, Elsevier, vol. 105(C), pages 209-231.
    14. Liu, Zhen & Xu, Chuanli & Kim, Kilwon & Choi, Jongsu & Hyun, Beom-soo, 2021. "An integrated numerical model for the chamber-turbine system of an oscillating water column wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    15. Opoku, F. & Uddin, M.N. & Atkinson, M., 2023. "A review of computational methods for studying oscillating water columns – the Navier-Stokes based equation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    16. Simonetti, I. & Cappietti, L. & Elsafti, H. & Oumeraci, H., 2018. "Evaluation of air compressibility effects on the performance of fixed OWC wave energy converters using CFD modelling," Renewable Energy, Elsevier, vol. 119(C), pages 741-753.
    17. Vyzikas, Thomas & Deshoulières, Samy & Barton, Matthew & Giroux, Olivier & Greaves, Deborah & Simmonds, Dave, 2017. "Experimental investigation of different geometries of fixed oscillating water column devices," Renewable Energy, Elsevier, vol. 104(C), pages 248-258.
    18. Dezhi Ning & Rongquan Wang & Chongwei Zhang, 2017. "Numerical Simulation of a Dual-Chamber Oscillating Water Column Wave Energy Converter," Sustainability, MDPI, vol. 9(9), pages 1-12, September.
    19. Peymani, Milad & Nikseresht, Amir H. & Bingham, Harry B., 2024. "A 3D numerical investigation of the influence of the geometrical parameters of an I-beam attenuator OWC on its performance at the resonance period," Energy, Elsevier, vol. 286(C).
    20. Çelik, Anıl & Altunkaynak, Abdüsselam, 2019. "Experimental investigations on the performance of a fixed-oscillating water column type wave energy converter," Energy, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:125:y:2018:i:c:p:518-528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.