IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i3p576-d1577033.html
   My bibliography  Save this article

A Review of Reliability Assessment and Lifetime Prediction Methods for Electrical Machine Insulation Under Thermal Aging

Author

Listed:
  • Jian Zhang

    (State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
    College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Jiajin Wang

    (State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
    College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Hongbo Li

    (Zhejiang Guoli Security Technology Co., Ltd., Hangzhou 310053, China)

  • Qin Zhang

    (State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
    College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Xiangning He

    (State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
    College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Cui Meng

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Xiaoyan Huang

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Youtong Fang

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Jianwei Wu

    (School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China)

Abstract

The thermal aging of insulation systems in electrical machines is a critical factor influencing their reliability and lifetime, particularly in modern high-performance electrical equipment. However, evaluating and predicting insulation lifetime under thermal aging poses significant challenges due to the complex aging mechanisms. Thermal aging not only leads to the degradation of macroscopic properties such as dielectric strength and breakdown voltage but also causes progressive changes in the microstructure, making the correlation between aging stress and aging indicators fundamental for lifetime evaluation and prediction. This review first summarizes the performance indicators reflecting insulation thermal aging. Subsequently, it systematically reviews current methods for reliability assessment and lifetime prediction in the thermal aging process of electrical machine insulation, with a focus on the application of different modeling approaches such as physics-of-failure (PoF) models, data-driven models, and stochastic process models in insulation lifetime modeling. The theoretical foundations, modeling processes, advantages, and limitations of each method are discussed. In particular, PoF-based models provide an in-depth understanding of degradation mechanisms to predict lifetime, but the major challenge remains in dealing with complex failure mechanisms that are not well understood. Data-driven methods, such as artificial intelligence or curve-fitting techniques, offer precise predictions of complex nonlinear relationships. However, their dependence on high-quality data and the lack of interpretability remain limiting factors. Stochastic process models, based on Wiener or Gamma processes, exhibit clear advantages in addressing the randomness and uncertainty in degradation processes, but their applicability in real-world complex operating conditions requires further research and validation. Furthermore, the potential applications of thermal lifetime models, such as electrical machine design optimization, fault prognosis, health management, and standard development are reviewed. Finally, future research directions are proposed, highlighting opportunities for breakthroughs in model coupling, multi-physical field analysis, and digital twin technology. These insights aim to provide a scientific basis for insulation reliability studies and lay the groundwork for developing efficient lifetime prediction tools.

Suggested Citation

  • Jian Zhang & Jiajin Wang & Hongbo Li & Qin Zhang & Xiangning He & Cui Meng & Xiaoyan Huang & Youtong Fang & Jianwei Wu, 2025. "A Review of Reliability Assessment and Lifetime Prediction Methods for Electrical Machine Insulation Under Thermal Aging," Energies, MDPI, vol. 18(3), pages 1-38, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:576-:d:1577033
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/3/576/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/3/576/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei-an Yan & Bao-wei Song & Gui-lin Duan & Yi-min Shi, 2017. "Real-time reliability evaluation of two-phase Wiener degradation process," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(1), pages 176-188, January.
    2. Wang, Xiaolin & Balakrishnan, Narayanaswamy & Guo, Bo, 2014. "Residual life estimation based on a generalized Wiener degradation process," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 13-23.
    3. Nan Chen & Kwok Tsui, 2013. "Condition monitoring and remaining useful life prediction using degradation signals: revisited," IISE Transactions, Taylor & Francis Journals, vol. 45(9), pages 939-952.
    4. Haitao Liao & Zhigang Tian, 2013. "A framework for predicting the remaining useful life of a single unit under time-varying operating conditions," IISE Transactions, Taylor & Francis Journals, vol. 45(9), pages 964-980.
    5. Wen, Yuxin & Wu, Jianguo & Das, Devashish & Tseng, Tzu-Liang(Bill), 2018. "Degradation modeling and RUL prediction using Wiener process subject to multiple change points and unit heterogeneity," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 113-124.
    6. Ye, Zhi-Sheng & Chen, Nan & Shen, Yan, 2015. "A new class of Wiener process models for degradation analysis," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 58-67.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Bingxin & Ma, Xiaobing & Yang, Li & Wang, Han & Wu, Tianyi, 2020. "A novel degradation-rate-volatility related effect Wiener process model with its extension to accelerated ageing data analysis," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    2. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
    3. Zhang, Fode & Ng, Hon Keung Tony & Shi, Yimin, 2020. "Mis-specification analysis of Wiener degradation models by using f-divergence with outliers," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    4. Wen, Yuxin & Wu, Jianguo & Das, Devashish & Tseng, Tzu-Liang(Bill), 2018. "Degradation modeling and RUL prediction using Wiener process subject to multiple change points and unit heterogeneity," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 113-124.
    5. Jahani, Salman & Zhou, Shiyu & Veeramani, Dharmaraj, 2021. "Stochastic prognostics under multiple time-varying environmental factors," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    6. Zhuang, Liangliang & Xu, Ancha & Wang, Yijun & Tang, Yincai, 2024. "Remaining useful life prediction for two-phase degradation model based on reparameterized inverse Gaussian process," European Journal of Operational Research, Elsevier, vol. 319(3), pages 877-890.
    7. Zhou, Shirong & Tang, Yincai & Xu, Ancha, 2021. "A generalized Wiener process with dependent degradation rate and volatility and time-varying mean-to-variance ratio," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    8. Huang, Jianlin & Golubović, Dušan S & Koh, Sau & Yang, Daoguo & Li, Xiupeng & Fan, Xuejun & Zhang, G.Q., 2016. "Lumen degradation modeling of white-light LEDs in step stress accelerated degradation test," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 152-159.
    9. Wang, Xiaofei & Wang, Bing Xing & Jiang, Pei Hua & Hong, Yili, 2020. "Accurate reliability inference based on Wiener process with random effects for degradation data," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    10. Wang, Zhijie & Zhai, Qingqing & Chen, Piao, 2021. "Degradation modeling considering unit-to-unit heterogeneity-A general model and comparative study," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    11. Bae, Suk Joo & Yuan, Tao & Ning, Shuluo & Kuo, Way, 2015. "A Bayesian approach to modeling two-phase degradation using change-point regression," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 66-74.
    12. Zhai, Qingqing & Ye, Zhi-Sheng & Yang, Jun & Zhao, Yu, 2016. "Measurement errors in degradation-based burn-in," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 126-135.
    13. Chen, Zhen & Li, Yaping & Zhou, Di & Xia, Tangbin & Pan, Ershun, 2021. "Two-phase degradation data analysis with change-point detection based on Gaussian process degradation model," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    14. Pang, Zhenan & Si, Xiaosheng & Hu, Changhua & Du, Dangbo & Pei, Hong, 2021. "A Bayesian Inference for Remaining Useful Life Estimation by Fusing Accelerated Degradation Data and Condition Monitoring Data," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    15. Dan Xu & Jiaolan He & Zhou Yang, 2022. "Reliability prediction based on Birnbaum–Saunders model and its application to smart meter," Annals of Operations Research, Springer, vol. 312(1), pages 519-532, May.
    16. Peihua Jiang, 2022. "Statistical Inference of Wiener Constant-Stress Accelerated Degradation Model with Random Effects," Mathematics, MDPI, vol. 10(16), pages 1-18, August.
    17. Ye, Zhi-Sheng & Chen, Nan & Shen, Yan, 2015. "A new class of Wiener process models for degradation analysis," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 58-67.
    18. Le Liu & Xiao-Yang Li & Enrico Zio & Rui Kang & Tong-Min Jiang, 2017. "Model Uncertainty in Accelerated Degradation Testing Analysis," Post-Print hal-01652218, HAL.
    19. Peng, Weiwen & Li, Yan-Feng & Mi, Jinhua & Yu, Le & Huang, Hong-Zhong, 2016. "Reliability of complex systems under dynamic conditions: A Bayesian multivariate degradation perspective," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 75-87.
    20. Gao, Hongda & Cui, Lirong & Dong, Qinglai, 2020. "Reliability modeling for a two-phase degradation system with a change point based on a Wiener process," Reliability Engineering and System Safety, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:576-:d:1577033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.