IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1721-d1062780.html
   My bibliography  Save this article

A Review of Magnetic Gear Technologies Used in Mechanical Power Transmission

Author

Listed:
  • Gerardo Ruiz-Ponce

    (La Laguna Institute of Technology, TNM, Torreon 27000, Mexico)

  • Marco A. Arjona

    (La Laguna Institute of Technology, TNM, Torreon 27000, Mexico)

  • Concepcion Hernandez

    (La Laguna Institute of Technology, TNM, Torreon 27000, Mexico)

  • Rafael Escarela-Perez

    (Energy Department, Metropolitan Autonomous University Azcapotzalco, Mexico City 02128, Mexico)

Abstract

This paper presents a literature review on magnetic gears, highlighting the advantages of using these technologies for mechanical power transmission applications in wind energy conversion systems and transportation, such as in electric vehicles. Magnetic gear technologies have important advantages over their mechanical counterparts. They can perform the speed change and torque transmission between input and output shafts by a contactless mechanism with a quiet operation and overload protection without the issues associated with conventional mechanical gears. The paper describes the fundamentals and operating principle of the field-modulated magnetic gear topologies and investigates the magnetic torque transmission mechanism. However, despite all the advantages highlighted in different research and development reports, there is still no convincing evidence to show that magnetic gear technologies are an acceptable alternative for industrial applications. The aim of this paper is to summarize previous work on magnetic gears to identify the topologies most suited for mechanical power transmission systems in wind energy conversion systems and electric vehicle applications. These applications will show that research and development of magnetic gear technologies contribute significantly to solutions for sustainable systems, a subject to which our current civilization must pay a lot of attention.

Suggested Citation

  • Gerardo Ruiz-Ponce & Marco A. Arjona & Concepcion Hernandez & Rafael Escarela-Perez, 2023. "A Review of Magnetic Gear Technologies Used in Mechanical Power Transmission," Energies, MDPI, vol. 16(4), pages 1-32, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1721-:d:1062780
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1721/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1721/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ningjun Feng & Haitao Yu & Minqiang Hu & Chunyuan Liu & Lei Huang & Zhenchuan Shi, 2016. "A Study on a Linear Magnetic-Geared Interior Permanent Magnet Generator for Direct-Drive Wave Energy Conversion," Energies, MDPI, vol. 9(7), pages 1-12, June.
    2. Reza Zeinali & Ozan Keysan, 2019. "A Rare-Earth Free Magnetically Geared Generator for Direct-Drive Wind Turbines," Energies, MDPI, vol. 12(3), pages 1-15, January.
    3. Li, Wenlong & Chau, K.T. & Lee, Christopher H.T. & Ching, T.W. & Chen, Mu & Jiang, J.Z., 2017. "A new linear magnetic gear with adjustable gear ratios and its application for direct-drive wave energy extraction," Renewable Energy, Elsevier, vol. 105(C), pages 199-208.
    4. Víctor Ballestín-Bernad & Jesús Sergio Artal-Sevil & José Antonio Domínguez-Navarro, 2021. "A Review of Transverse Flux Machines Topologies and Design," Energies, MDPI, vol. 14(21), pages 1-34, November.
    5. Guobin Peng & Jin Wei & Yujun Shi & Ziyun Shao & Linni Jian, 2018. "A Novel Transverse Flux Permanent Magnet Disk Wind Power Generator with H-Shaped Stator Cores," Energies, MDPI, vol. 11(4), pages 1-19, March.
    6. Philippe Enrici & Ivan Meny & Daniel Matt, 2021. "Conceptual Study of Vernier Generator and Rectifier Association for Low Power Wind Energy Systems," Energies, MDPI, vol. 14(3), pages 1-20, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Valentin Mateev & Miglenna Todorova & Iliana Marinova, 2023. "Design Aspects of Conical Coaxial Magnetic Gears," Energies, MDPI, vol. 16(10), pages 1-16, May.
    2. Kritika Deepak & Mohamed Amine Frikha & Yassine Benômar & Mohamed El Baghdadi & Omar Hegazy, 2023. "In-Wheel Motor Drive Systems for Electric Vehicles: State of the Art, Challenges, and Future Trends," Energies, MDPI, vol. 16(7), pages 1-31, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raju Ahamed & Kristoffer McKee & Ian Howard, 2022. "A Review of the Linear Generator Type of Wave Energy Converters’ Power Take-Off Systems," Sustainability, MDPI, vol. 14(16), pages 1-42, August.
    2. Andrzej Smoleń & Lesław Gołębiowski & Marek Gołębiowski & Damian Mazur, 2019. "Computationally Efficient Method of Co-Energy Calculation for Transverse Flux Machine Based on Poisson Equation in 2D," Energies, MDPI, vol. 12(22), pages 1-16, November.
    3. Reza Jafari & Pedram Asef & Mohammad Ardebili & Mohammad Mahdi Derakhshani, 2022. "Linear Permanent Magnet Vernier Generators for Wave Energy Applications: Analysis, Challenges, and Opportunities," Sustainability, MDPI, vol. 14(17), pages 1-35, September.
    4. Marco Palmieri & Salvatore Bozzella & Giuseppe Leonardo Cascella & Marco Bronzini & Marco Torresi & Francesco Cupertino, 2018. "Wind Micro-Turbine Networks for Urban Areas: Optimal Design and Power Scalability of Permanent Magnet Generators," Energies, MDPI, vol. 11(10), pages 1-21, October.
    5. Yujun Shi & Linni Jian, 2018. "A Novel Dual-Permanent-Magnet-Excited Machine with Flux Strengthening Effect for Low-Speed Large-Torque Applications," Energies, MDPI, vol. 11(1), pages 1-17, January.
    6. Jin Liu & Wenxiang Zhao & Jinghua Ji & Guohai Liu & Tao Tao, 2016. "A Novel Flux Focusing Magnetically Geared Machine with Reduced Eddy Current Loss," Energies, MDPI, vol. 9(11), pages 1-15, November.
    7. Mehmet C. Kulan & Nick J. Baker & Simon Turvey, 2022. "Impact of Manufacturing and Material Uncertainties in Performance of a Transverse Flux Machine for Aerospace," Energies, MDPI, vol. 15(20), pages 1-21, October.
    8. Yu Zou & Ka Wai Eric Cheng, 2017. "A Vertical Flux-Switching Permanent Magnet Based Oscillating Wave Power Generator with Energy Storage," Energies, MDPI, vol. 10(7), pages 1-19, June.
    9. Khalil Touimi & Mohamed Benbouzid & Zhe Chen, 2020. "Optimal Design of a Multibrid Permanent Magnet Generator for a Tidal Stream Turbine," Energies, MDPI, vol. 13(2), pages 1-19, January.
    10. Jing Zhang & Haitao Yu & Zhenchuan Shi, 2019. "Analysis of a PM Linear Generator with Double Translators for Complementary Energy Generation Platform," Energies, MDPI, vol. 12(24), pages 1-12, December.
    11. Anna Przybył & Piotr Gębara & Roman Gozdur & Krzysztof Chwastek, 2022. "Modeling of Magnetic Properties of Rare-Earth Hard Magnets," Energies, MDPI, vol. 15(21), pages 1-18, October.
    12. Guilherme Ferreira de Lima & William de Jesus Kremes & Hugo Valadares Siqueira & Bahar Aliakbarian & Attilio Converti & Carlos Henrique Illa Font, 2023. "A Three-Phase Phase-Modular Single-Ended Primary-Inductance Converter Rectifier Operating in Discontinuous Conduction Mode for Small-Scale Wind Turbine Applications," Energies, MDPI, vol. 16(13), pages 1-18, July.
    13. Jing Zhang & Haitao Yu & Zhenchuan Shi, 2018. "Design and Experiment Analysis of a Direct-Drive Wave Energy Converter with a Linear Generator," Energies, MDPI, vol. 11(4), pages 1-15, March.
    14. Víctor Ballestín-Bernad & Jesús Sergio Artal-Sevil & José Antonio Domínguez-Navarro, 2023. "Prototype of a Two-Phase Axial-Gap Transverse Flux Generator Based on Reused Components and 3D Printing," Energies, MDPI, vol. 16(4), pages 1-20, February.
    15. Tomasz Lerch, 2023. "Analysis of the Impact of Design Parameters on the Power Density of the New Design of the Cogging Machine," Energies, MDPI, vol. 16(7), pages 1-17, March.
    16. Víctor Ballestín-Bernad & Jesús Sergio Artal-Sevil & José Antonio Domínguez-Navarro, 2021. "A Review of Transverse Flux Machines Topologies and Design," Energies, MDPI, vol. 14(21), pages 1-34, November.
    17. Altaf Hussain Rajpar & Imran Ali & Ahmad E. Eladwi & Mohamed Bashir Ali Bashir, 2021. "Recent Development in the Design of Wind Deflectors for Vertical Axis Wind Turbine: A Review," Energies, MDPI, vol. 14(16), pages 1-23, August.
    18. Adolfo Dannier & Gianluca Brando & Marino Coppola, 2022. "Special Issue on Power Converter of Electric Machines, Renewable Energy Systems, and Transportation," Energies, MDPI, vol. 15(3), pages 1-3, January.
    19. Amina Bensalah & Georges Barakat & Yacine Amara, 2022. "Electrical Generators for Large Wind Turbine: Trends and Challenges," Energies, MDPI, vol. 15(18), pages 1-36, September.
    20. Tao Xia & Haitao Yu & Zhenchuan Shi & Rong Guo, 2018. "Comparative Analysis and Experimental Verification of a Linear Tubular Generator for Wave Energy Conversion," Energies, MDPI, vol. 11(7), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1721-:d:1062780. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.