IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i2p421-d1570378.html
   My bibliography  Save this article

Strategies for Workplace EV Charging Management

Author

Listed:
  • Natascia Andrenacci

    (Sustainable Mobility and Transport Laboratory, C.R. Casaccia, ENEA, Via Anguillarese, 00193 Rome, Italy)

  • Antonino Genovese

    (AGENS Viale Pasteur, 10, 00144 Rome, Italy)

  • Giancarlo Giuli

    (Sustainable Mobility and Transport Laboratory, C.R. Casaccia, ENEA, Via Anguillarese, 00193 Rome, Italy)

Abstract

Electric vehicles (EVs) help reduce transportation emissions. A user-friendly charging infrastructure and efficient charging processes can promote their wider adoption. Low-power charging is effective for short-distance travel, especially when vehicles are parked for extended periods, like during daily commutes. These idle times present opportunities to improve coordination between EVs and service providers to meet charging needs. The present study examines strategies for coordinated charging in workplace parking lots to minimize the impact on the power grid while maximizing the satisfaction of charging demand. Our method utilizes a heuristic approach for EV charging, focusing on event logic that considers arrival and departure times and energy requirements. We compare various charging management methods in a workplace parking lot against a first-in-first-out (FIFO) strategy. Using real data on workplace parking lot usage, the study found that efficient electric vehicle charging in a parking lot can be achieved either through optimized scheduling with a single high-power charger, requiring user cooperation, or by installing multiple chargers with alternating sockets. Compared to FIFO charging, the implemented strategies allow for a reduction in the maximum charging power between 30 and 40%, a charging demand satisfaction rate of 99%, and a minimum SOC amount of 83%.

Suggested Citation

  • Natascia Andrenacci & Antonino Genovese & Giancarlo Giuli, 2025. "Strategies for Workplace EV Charging Management," Energies, MDPI, vol. 18(2), pages 1-32, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:421-:d:1570378
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/2/421/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/2/421/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jóni B. Santos & André M. B. Francisco & Cristiano Cabrita & Jânio Monteiro & André Pacheco & Pedro J. S. Cardoso, 2024. "Development and Implementation of a Smart Charging System for Electric Vehicles Based on the ISO 15118 Standard," Energies, MDPI, vol. 17(12), pages 1-25, June.
    2. Muhammad Irfan & Sara Deilami & Shujuan Huang & Binesh Puthen Veettil, 2023. "Rooftop Solar and Electric Vehicle Integration for Smart, Sustainable Homes: A Comprehensive Review," Energies, MDPI, vol. 16(21), pages 1-29, October.
    3. Fathy, Ahmed, 2023. "Bald eagle search optimizer-based energy management strategy for microgrid with renewable sources and electric vehicles," Applied Energy, Elsevier, vol. 334(C).
    4. Saleh Aghajan-Eshkevari & Sasan Azad & Morteza Nazari-Heris & Mohammad Taghi Ameli & Somayeh Asadi, 2022. "Charging and Discharging of Electric Vehicles in Power Systems: An Updated and Detailed Review of Methods, Control Structures, Objectives, and Optimization Methodologies," Sustainability, MDPI, vol. 14(4), pages 1-31, February.
    5. Rajesh Shah & Vikram Mittal & Angelina Mae Precilla, 2024. "Challenges and Advancements in All-Solid-State Battery Technology for Electric Vehicles," J, MDPI, vol. 7(3), pages 1-14, June.
    6. Wisam Kareem Meteab & Salwan Ali Habeeb Alsultani & Francisco Jurado, 2023. "Energy Management of Microgrids with a Smart Charging Strategy for Electric Vehicles Using an Improved RUN Optimizer," Energies, MDPI, vol. 16(16), pages 1-18, August.
    7. Andrenacci, N. & Ragona, R. & Valenti, G., 2016. "A demand-side approach to the optimal deployment of electric vehicle charging stations in metropolitan areas," Applied Energy, Elsevier, vol. 182(C), pages 39-46.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong, Jin Yi & Tan, Wen Shan & Khorasany, Mohsen & Razzaghi, Reza, 2023. "Electric vehicles destination charging: An overview of charging tariffs, business models and coordination strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    2. Du, Jiuyu & Ouyang, Danhua, 2017. "Progress of Chinese electric vehicles industrialization in 2015: A review," Applied Energy, Elsevier, vol. 188(C), pages 529-546.
    3. Natascia Andrenacci & Roberto Ragona & Antonino Genovese, 2020. "Evaluation of the Instantaneous Power Demand of an Electric Charging Station in an Urban Scenario," Energies, MDPI, vol. 13(11), pages 1-19, May.
    4. Csiszár, Csaba & Csonka, Bálint & Földes, Dávid & Wirth, Ervin & Lovas, Tamás, 2020. "Location optimisation method for fast-charging stations along national roads," Journal of Transport Geography, Elsevier, vol. 88(C).
    5. Pichamon Keawthong & Veera Muangsin & Chupun Gowanit, 2022. "Location Selection of Charging Stations for Electric Taxis: A Bangkok Case," Sustainability, MDPI, vol. 14(17), pages 1-23, September.
    6. Shuping Wu & Zan Yang, 2020. "Availability of Public Electric Vehicle Charging Pile and Development of Electric Vehicle: Evidence from China," Sustainability, MDPI, vol. 12(16), pages 1-14, August.
    7. Wang, Yue & Shi, Jianmai & Wang, Rui & Liu, Zhong & Wang, Ling, 2018. "Siting and sizing of fast charging stations in highway network with budget constraint," Applied Energy, Elsevier, vol. 228(C), pages 1255-1271.
    8. Zhi Wu & Yuxuan Zhuang & Suyang Zhou & Shuning Xu & Peng Yu & Jinqiao Du & Xiner Luo & Ghulam Abbas, 2020. "Bi-Level Planning of Multi-Functional Vehicle Charging Stations Considering Land Use Types," Energies, MDPI, vol. 13(5), pages 1-17, March.
    9. Jianxin Qin & Jing Qiu & Yating Chen & Tao Wu & Longgang Xiang, 2022. "Charging Stations Selection Using a Graph Convolutional Network from Geographic Grid," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
    10. Yue Wang & Zhong Liu & Jianmai Shi & Guohua Wu & Rui Wang, 2018. "Joint Optimal Policy for Subsidy on Electric Vehicles and Infrastructure Construction in Highway Network," Energies, MDPI, vol. 11(9), pages 1-21, September.
    11. Jingnan Zhang & Shichun Xu & Zhengxia He & Chengze Li & Xiaona Meng, 2022. "Factors Influencing Adoption Intention for Electric Vehicles under a Subsidy Deduction: From Different City-Level Perspectives," Sustainability, MDPI, vol. 14(10), pages 1-24, May.
    12. VJ Vijayalakshmi & A Amudha & K Dhayalini & A Prakash, 2024. "A hybrid WFS-CGO based approach for optimal allocation of EV charging spots along with capacitors in smart distribution network for congestion management," Energy & Environment, , vol. 35(4), pages 1673-1702, June.
    13. Jian Xiao & Wei Hou, 2022. "Cost Estimation Process of Green Energy Production and Consumption Using Probability Learning Approach," Sustainability, MDPI, vol. 14(12), pages 1-14, June.
    14. Yuxuan Wang & Bingxu Zhang & Chenyang Li & Yongzhang Huang, 2022. "Collaborative Robust Optimization Strategy of Electric Vehicles and Other Distributed Energy Considering Load Flexibility," Energies, MDPI, vol. 15(8), pages 1-22, April.
    15. Ch. S. V. Prasad Rao & A. Pandian & Ch. Rami Reddy & A. Giri Prasad & Ahmad Alahmadi & Yasser Alharbi, 2022. "A Hybrid AOSAOA Scheme Based on the Optimal Location for Electric Vehicle Parking Lots and Capacitors in a Grid to Care of Voltage Profile and Power Loss," Energies, MDPI, vol. 15(12), pages 1-23, June.
    16. Powell, Siobhan & Cezar, Gustavo Vianna & Rajagopal, Ram, 2022. "Scalable probabilistic estimates of electric vehicle charging given observed driver behavior," Applied Energy, Elsevier, vol. 309(C).
    17. Zhu, Xianwen & Xia, Mingchao & Chiang, Hsiao-Dong, 2018. "Coordinated sectional droop charging control for EV aggregator enhancing frequency stability of microgrid with high penetration of renewable energy sources," Applied Energy, Elsevier, vol. 210(C), pages 936-943.
    18. Junaid Bin Fakhrul Islam & Mir Toufikur Rahman & Shameem Ahmad & Tofael Ahmed & G. M. Shafiullah & Hazlie Mokhlis & Mohamadariff Othman & Tengku Faiz Tengku Mohmed Noor Izam & Hasmaini Mohamad & Moham, 2023. "Multi-Objective-Based Charging and Discharging Coordination of Plug-in Electric Vehicle Integrating Capacitor and OLTC," Energies, MDPI, vol. 16(5), pages 1-20, February.
    19. Wang, Hua & Zhao, De & Cai, Yutong & Meng, Qiang & Ong, Ghim Ping, 2021. "Taxi trajectory data based fast-charging facility planning for urban electric taxi systems," Applied Energy, Elsevier, vol. 286(C).
    20. Micari, Salvatore & Polimeni, Antonio & Napoli, Giuseppe & Andaloro, Laura & Antonucci, Vincenzo, 2017. "Electric vehicle charging infrastructure planning in a road network," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 98-108.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:421-:d:1570378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.