IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i2p286-d1564552.html
   My bibliography  Save this article

Effect of Pitch Angle on Structural and Aerodynamic Characteristics of Vertical-Axis Wind Turbines (VAWTs) Using Leading-Edge Protuberance Blades

Author

Listed:
  • Karthikvel Elangovan

    (Turbulence & Flow Control Laboratory, School of Mechanical Engineering, SASTRA Deemed to Be University, Thanjavur 613041, Tamil Nadu, India)

  • S. Nadaraja Pillai

    (Turbulence & Flow Control Laboratory, School of Mechanical Engineering, SASTRA Deemed to Be University, Thanjavur 613041, Tamil Nadu, India)

Abstract

An experimental investigation was carried out to understand the effects of LEP (leading-edge protuberance) blades on the structural characteristics of VAWTs. A series of experiments were performed on VAWTs with straight and LEP blades for a wide range of wind velocity (6 m/s to 20 m/s) and pitch angles (−20° to 20°), and the structural excitations on the VAWT structure were measured using a triaxial accelerometer in each case. The raw acceleration data were extensively processed in the time and frequency domains to identify the variation in structural excitation caused by the unsteady wind and aerodynamic loads on the VAWT structure. Understanding the aerodynamic changes and their impact on structural characteristics is essential. The current study examines how LEP influences the structural excitation of VAWTs. However, a great deal of aerodynamic variation was observed for the LEP blades, so the straight blades of the VAWT were replaced with various modified LEP blades, for which a similar set of experiments was carried out. The study presents a better performance (self-starting, stall-mitigating) for VAWTs with LEP 3 and 2 blades, with a significant reduction in the excitation of loads due to wind load and the changes in aerodynamics observed in the along- and across-wind directions.

Suggested Citation

  • Karthikvel Elangovan & S. Nadaraja Pillai, 2025. "Effect of Pitch Angle on Structural and Aerodynamic Characteristics of Vertical-Axis Wind Turbines (VAWTs) Using Leading-Edge Protuberance Blades," Energies, MDPI, vol. 18(2), pages 1-28, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:286-:d:1564552
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/2/286/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/2/286/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Xiong & Liang, Shi & Li, Gangqiang & Godbole, Ajit & Lu, Cheng, 2020. "An improved dynamic stall model and its effect on wind turbine fatigue load prediction," Renewable Energy, Elsevier, vol. 156(C), pages 117-130.
    2. Liu, Xiong & Lu, Cheng & Li, Gangqiang & Godbole, Ajit & Chen, Yan, 2017. "Effects of aerodynamic damping on the tower load of offshore horizontal axis wind turbines," Applied Energy, Elsevier, vol. 204(C), pages 1101-1114.
    3. Francisco Pimenta & Vitor Liotto Pedrelli & Thea Vanelli & Filipe Magalhães, 2024. "On the Effect of Nonlinear Damping Sources in Output-Only Identification Methods Applied to Floating Wind Turbines," Energies, MDPI, vol. 17(7), pages 1-17, April.
    4. Pimenta, Francisco & Ribeiro, Daniel & Román, Adela & Magalhães, Filipe, 2024. "Predictive model for fatigue evaluation of floating wind turbines validated with experimental data," Renewable Energy, Elsevier, vol. 223(C).
    5. Wenxing Hao & Abdulshakur Abdi & Guobiao Wang & Fuzhong Wu, 2023. "Study on the Pitch Angle Effect on the Power Coefficient and Blade Fatigue Load of a Vertical Axis Wind Turbine," Energies, MDPI, vol. 16(21), pages 1-18, October.
    6. Sagharichi, A. & Zamani, M. & Ghasemi, A., 2018. "Effect of solidity on the performance of variable-pitch vertical axis wind turbine," Energy, Elsevier, vol. 161(C), pages 753-775.
    7. Mahmood Abduljabbar Hammad & Abdelgadir Mohamed Mahmoud & Ahmed M. Abdelrhman & Shamsul Sarip, 2024. "Performance Enhancement of H-Type Darrieus VAWT Using a Hybrid Method of Blade Pitch Angle Regulation," Energies, MDPI, vol. 17(16), pages 1-17, August.
    8. Rezaeiha, Abdolrahim & Kalkman, Ivo & Blocken, Bert, 2017. "Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine," Applied Energy, Elsevier, vol. 197(C), pages 132-150.
    9. João Pacheco & Gustavo Oliveira & Filipe Magalhães & Carlos Moutinho & Álvaro Cunha, 2021. "Vibration-Based Monitoring of Wind Turbines: Influence of Layout and Noise of Sensors," Energies, MDPI, vol. 14(2), pages 1-19, January.
    10. Raciti Castelli, Marco & Dal Monte, Andrea & Quaresimin, Marino & Benini, Ernesto, 2013. "Numerical evaluation of aerodynamic and inertial contributions to Darrieus wind turbine blade deformation," Renewable Energy, Elsevier, vol. 51(C), pages 101-112.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Jie & Chen, Yaoran & Han, Zhaolong & Zhou, Dai & Bao, Yan & Zhao, Yongsheng, 2020. "Investigation of V-shaped blade for the performance improvement of vertical axis wind turbines," Applied Energy, Elsevier, vol. 260(C).
    2. Wang, Ying & Shen, Sheng & Li, Gaohui & Huang, Diangui & Zheng, Zhongquan, 2018. "Investigation on aerodynamic performance of vertical axis wind turbine with different series airfoil shapes," Renewable Energy, Elsevier, vol. 126(C), pages 801-818.
    3. Singh, Enderaaj & Roy, Sukanta & Yam, Ke San & Law, Ming Chiat, 2023. "Numerical analysis of H-Darrieus vertical axis wind turbines with varying aspect ratios for exhaust energy extractions," Energy, Elsevier, vol. 277(C).
    4. Acarer, Sercan, 2020. "Peak lift-to-drag ratio enhancement of the DU12W262 airfoil by passive flow control and its impact on horizontal and vertical axis wind turbines," Energy, Elsevier, vol. 201(C).
    5. Barnes, Andrew & Marshall-Cross, Daniel & Hughes, Ben Richard, 2021. "Towards a standard approach for future Vertical Axis Wind Turbine aerodynamics research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    6. Bangga, Galih & Dessoky, Amgad & Wu, Zhenlong & Rogowski, Krzysztof & Hansen, Martin O.L., 2020. "Accuracy and consistency of CFD and engineering models for simulating vertical axis wind turbine loads," Energy, Elsevier, vol. 206(C).
    7. Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2019. "On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines," Energy, Elsevier, vol. 180(C), pages 838-857.
    8. Zhang, Qiang & Bashir, Musa & Miao, Weipao & Liu, Qingsong & Li, Chun & Yue, Minnan & Wang, Peilin, 2023. "Aerodynamic analysis of a novel pitch control strategy and parameter combination for vertical axis wind turbines," Renewable Energy, Elsevier, vol. 216(C).
    9. Li, Gang & Li, Yidian & Li, Jia & Huang, Huilan & Huang, Liyan, 2023. "Research on dynamic characteristics of vertical axis wind turbine extended to the outside of buildings," Energy, Elsevier, vol. 272(C).
    10. Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2018. "Towards optimal aerodynamic design of vertical axis wind turbines: Impact of solidity and number of blades," Energy, Elsevier, vol. 165(PB), pages 1129-1148.
    11. Zhu, Chengyong & Qiu, Yingning & Wang, Tongguang, 2021. "Dynamic stall of the wind turbine airfoil and blade undergoing pitch oscillations: A comparative study," Energy, Elsevier, vol. 222(C).
    12. Jiang, Tieliu & Zhao, Yuze & Wang, Shengwen & Zhang, Lidong & Li, Guohao, 2024. "Aerodynamic characterization of a H-Darrieus wind turbine with a Drag-Disturbed Flow device installation," Energy, Elsevier, vol. 292(C).
    13. Pengfei Yan & Yaning Li & Qiang Gao & Shuai Lian & Qihui Wu, 2023. "Design and Analysis of an Adaptive Dual-Drive Lift–Drag Composite Vertical-Axis Wind Turbine Generator," Energies, MDPI, vol. 16(22), pages 1-15, November.
    14. Mohanasundaram Anthony & Valsalal Prasad & Kannadasan Raju & Mohammed H. Alsharif & Zong Woo Geem & Junhee Hong, 2020. "Design of Rotor Blades for Vertical Axis Wind Turbine with Wind Flow Modifier for Low Wind Profile Areas," Sustainability, MDPI, vol. 12(19), pages 1-26, September.
    15. Renjie Mo & Haigui Kang & Miao Li & Xuanlie Zhao, 2017. "Seismic Fragility Analysis of Monopile Offshore Wind Turbines under Different Operational Conditions," Energies, MDPI, vol. 10(7), pages 1-22, July.
    16. Hassan, Syed Saddam ul & Javaid, M. Tariq & Rauf, Umar & Nasir, Sheharyar & Shahzad, Aamer & Salamat, Shuaib, 2023. "Systematic investigation of power enhancement of Vertical Axis Wind Turbines using bio-inspired leading edge tubercles," Energy, Elsevier, vol. 270(C).
    17. Kuang, Limin & Su, Jie & Chen, Yaoran & Han, Zhaolong & Zhou, Dai & Zhang, Kai & Zhao, Yongsheng & Bao, Yan, 2022. "Wind-capture-accelerate device for performance improvement of vertical-axis wind turbines: External diffuser system," Energy, Elsevier, vol. 239(PB).
    18. Cheng, Yi & Azizipanah-Abarghooee, Rasoul & Azizi, Sadegh & Ding, Lei & Terzija, Vladimir, 2020. "Smart frequency control in low inertia energy systems based on frequency response techniques: A review," Applied Energy, Elsevier, vol. 279(C).
    19. Wen, Binrong & Jiang, Zhihao & Li, Zhanwei & Peng, Zhike & Dong, Xingjian & Tian, Xinliang, 2022. "On the aerodynamic loading effect of a model Spar-type floating wind turbine: An experimental study," Renewable Energy, Elsevier, vol. 184(C), pages 306-319.
    20. Almohammadi, K.M. & Ingham, D.B. & Ma, L. & Pourkashan, M., 2013. "Computational fluid dynamics (CFD) mesh independency techniques for a straight blade vertical axis wind turbine," Energy, Elsevier, vol. 58(C), pages 483-493.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:286-:d:1564552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.