IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v51y2013icp101-112.html
   My bibliography  Save this article

Numerical evaluation of aerodynamic and inertial contributions to Darrieus wind turbine blade deformation

Author

Listed:
  • Raciti Castelli, Marco
  • Dal Monte, Andrea
  • Quaresimin, Marino
  • Benini, Ernesto

Abstract

This paper presents a model for the evaluation of aerodynamic and inertial contributions to a vertical-axis wind turbine (VAWT) blade deformation. Through the use of a specially designed coupling code, a solid modeling software, capable of generating the desired blade geometry depending on the design geometric parameters, is linked to a finite volume Computational Fluid Dynamic (CFD) code for the calculation of rotor performance and to a Finite Element Method (FEM) code for the structural design analysis of rotor blades. After describing the computational model and the relative validation procedure, a full RANS unsteady calculation is presented for a three-bladed rotor architecture, characterized by a NACA 0012 profile. Flow field characteristics are investigated for a constant unperturbed free-stream wind velocity of 9 m/s, determining the torque coefficient generated from the three blades as a function of rotor azimuthal coordinate. The emphasis is subsequently placed on obtaining an estimate for both pressure/tangential forces and centrifugal ones to blade structural loadings, thus assessing the influence of aerodynamic and inertial contributions to blade stresses and deformations.

Suggested Citation

  • Raciti Castelli, Marco & Dal Monte, Andrea & Quaresimin, Marino & Benini, Ernesto, 2013. "Numerical evaluation of aerodynamic and inertial contributions to Darrieus wind turbine blade deformation," Renewable Energy, Elsevier, vol. 51(C), pages 101-112.
  • Handle: RePEc:eee:renene:v:51:y:2013:i:c:p:101-112
    DOI: 10.1016/j.renene.2012.07.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811200451X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.07.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Raciti Castelli, Marco & Englaro, Alessandro & Benini, Ernesto, 2011. "The Darrieus wind turbine: Proposal for a new performance prediction model based on CFD," Energy, Elsevier, vol. 36(8), pages 4919-4934.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marzec, Łukasz & Buliński, Zbigniew & Krysiński, Tomasz, 2021. "Fluid structure interaction analysis of the operating Savonius wind turbine," Renewable Energy, Elsevier, vol. 164(C), pages 272-284.
    2. Bangga, Galih & Dessoky, Amgad & Wu, Zhenlong & Rogowski, Krzysztof & Hansen, Martin O.L., 2020. "Accuracy and consistency of CFD and engineering models for simulating vertical axis wind turbine loads," Energy, Elsevier, vol. 206(C).
    3. Jinghua Lin & You-lin Xu & Yong Xia, 2019. "Structural Analysis of Large-Scale Vertical Axis Wind Turbines Part II: Fatigue and Ultimate Strength Analyses," Energies, MDPI, vol. 12(13), pages 1-18, July.
    4. Wang, Ying & Shen, Sheng & Li, Gaohui & Huang, Diangui & Zheng, Zhongquan, 2018. "Investigation on aerodynamic performance of vertical axis wind turbine with different series airfoil shapes," Renewable Energy, Elsevier, vol. 126(C), pages 801-818.
    5. Wekesa, David Wafula & Wang, Cong & Wei, Yingjie & Kamau, Joseph N. & Danao, Louis Angelo M., 2015. "A numerical analysis of unsteady inflow wind for site specific vertical axis wind turbine: A case study for Marsabit and Garissa in Kenya," Renewable Energy, Elsevier, vol. 76(C), pages 648-661.
    6. Trivellato, F. & Raciti Castelli, M., 2015. "Appraisal of Strouhal number in wind turbine engineering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 795-804.
    7. Almohammadi, K.M. & Ingham, D.B. & Ma, L. & Pourkashan, M., 2013. "Computational fluid dynamics (CFD) mesh independency techniques for a straight blade vertical axis wind turbine," Energy, Elsevier, vol. 58(C), pages 483-493.
    8. Stefania Zanforlin & Fulvio Buzzi & Marika Francesconi, 2019. "Performance Analysis of Hydrofoil Shaped and Bi-Directional Diffusers for Cross Flow Tidal Turbines in Single and Double-Rotor Configurations," Energies, MDPI, vol. 12(2), pages 1-25, January.
    9. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Murata, Junsuke & Kawabata, Toshiaki & Shimizu, Kento & Ogasawara, Tatsuhiko & Nakai, Alisa & Kasuya, Takuji, 2016. "Wind tunnel and numerical study of a straight-bladed vertical axis wind turbine in three-dimensional analysis (Part I: For predicting aerodynamic loads and performance)," Energy, Elsevier, vol. 106(C), pages 443-452.
    10. Zanforlin, Stefania & Deluca, Stefano, 2018. "Effects of the Reynolds number and the tip losses on the optimal aspect ratio of straight-bladed Vertical Axis Wind Turbines," Energy, Elsevier, vol. 148(C), pages 179-195.
    11. Lam, H.F. & Peng, H.Y., 2016. "Study of wake characteristics of a vertical axis wind turbine by two- and three-dimensional computational fluid dynamics simulations," Renewable Energy, Elsevier, vol. 90(C), pages 386-398.
    12. Trivellato, F. & Raciti Castelli, M., 2014. "On the Courant–Friedrichs–Lewy criterion of rotating grids in 2D vertical-axis wind turbine analysis," Renewable Energy, Elsevier, vol. 62(C), pages 53-62.
    13. Dessoky, Amgad & Lutz, Thorsten & Bangga, Galih & Krämer, Ewald, 2019. "Computational studies on Darrieus VAWT noise mechanisms employing a high order DDES model," Renewable Energy, Elsevier, vol. 143(C), pages 404-425.
    14. Lin Pan & Ze Zhu & Zhaoyang Shi & Leichong Wang, 2021. "Modeling and Investigation of Blade Trailing Edge of Vertical Axis Offshore Wind Turbine," Sustainability, MDPI, vol. 13(19), pages 1-25, September.
    15. Shaaban, S. & Albatal, A. & Mohamed, M.H., 2018. "Optimization of H-Rotor Darrieus turbines' mutual interaction in staggered arrangements," Renewable Energy, Elsevier, vol. 125(C), pages 87-99.
    16. Li, Qingan & Cai, Chang & Maeda, Takao & Kamada, Yasunari & Shimizu, Kento & Dong, Yehong & Zhang, Fanghong & Xu, Jianzhong, 2021. "Visualization of aerodynamic forces and flow field on a straight-bladed vertical axis wind turbine by wind tunnel experiments and panel method," Energy, Elsevier, vol. 225(C).
    17. Bedon, Gabriele & De Betta, Stefano & Benini, Ernesto, 2016. "Performance-optimized airfoil for Darrieus wind turbines," Renewable Energy, Elsevier, vol. 94(C), pages 328-340.
    18. Jin, Xin & Zhao, Gaoyuan & Gao, KeJun & Ju, Wenbin, 2015. "Darrieus vertical axis wind turbine: Basic research methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 212-225.
    19. Dessoky, Amgad & Bangga, Galih & Lutz, Thorsten & Krämer, Ewald, 2019. "Aerodynamic and aeroacoustic performance assessment of H-rotor darrieus VAWT equipped with wind-lens technology," Energy, Elsevier, vol. 175(C), pages 76-97.
    20. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Murata, Junsuke & Kawabata, Toshiaki & Shimizu, Kento & Ogasawara, Tatsuhiko & Nakai, Alisa & Kasuya, Takuji, 2016. "Wind tunnel and numerical study of a straight-bladed Vertical Axis Wind Turbine in three-dimensional analysis (Part II: For predicting flow field and performance)," Energy, Elsevier, vol. 104(C), pages 295-307.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wekesa, David Wafula & Wang, Cong & Wei, Yingjie & Danao, Louis Angelo M., 2017. "Analytical and numerical investigation of unsteady wind for enhanced energy capture in a fluctuating free-stream," Energy, Elsevier, vol. 121(C), pages 854-864.
    2. Andrea Alaimo & Antonio Esposito & Antonio Messineo & Calogero Orlando & Davide Tumino, 2015. "3D CFD Analysis of a Vertical Axis Wind Turbine," Energies, MDPI, vol. 8(4), pages 1-21, April.
    3. Balduzzi, Francesco & Bianchini, Alessandro & Ferrara, Giovanni & Ferrari, Lorenzo, 2016. "Dimensionless numbers for the assessment of mesh and timestep requirements in CFD simulations of Darrieus wind turbines," Energy, Elsevier, vol. 97(C), pages 246-261.
    4. Tjiu, Willy & Marnoto, Tjukup & Mat, Sohif & Ruslan, Mohd Hafidz & Sopian, Kamaruzzaman, 2015. "Darrieus vertical axis wind turbine for power generation I: Assessment of Darrieus VAWT configurations," Renewable Energy, Elsevier, vol. 75(C), pages 50-67.
    5. Meana-Fernández, Andrés & Solís-Gallego, Irene & Fernández Oro, Jesús Manuel & Argüelles Díaz, Katia María & Velarde-Suárez, Sandra, 2018. "Parametrical evaluation of the aerodynamic performance of vertical axis wind turbines for the proposal of optimized designs," Energy, Elsevier, vol. 147(C), pages 504-517.
    6. Jinghua Lin & You-Lin Xu & Yong Xia & Chao Li, 2019. "Structural Analysis of Large-Scale Vertical-Axis Wind Turbines, Part I: Wind Load Simulation," Energies, MDPI, vol. 12(13), pages 1-31, July.
    7. Lakshmi Srinivasan & Nishanth Ram & Sudharshan Bharatwaj Rengarajan & Unnikrishnan Divakaran & Akram Mohammad & Ratna Kishore Velamati, 2023. "Effect of Macroscopic Turbulent Gust on the Aerodynamic Performance of Vertical Axis Wind Turbine," Energies, MDPI, vol. 16(5), pages 1-24, February.
    8. Liu, Qingsong & Miao, Weipao & Ye, Qi & Li, Chun, 2022. "Performance assessment of an innovative Gurney flap for straight-bladed vertical axis wind turbine," Renewable Energy, Elsevier, vol. 185(C), pages 1124-1138.
    9. Xiao, Qing & Liu, Wendi & Incecik, Atilla, 2013. "Flow control for VATT by fixed and oscillating flap," Renewable Energy, Elsevier, vol. 51(C), pages 141-152.
    10. Bedon, Gabriele & Raciti Castelli, Marco & Benini, Ernesto, 2014. "Proposal for an innovative chord distribution in the Troposkien vertical axis wind turbine concept," Energy, Elsevier, vol. 66(C), pages 689-698.
    11. Rahmatian, Mohammad Ali & Hashemi Tari, Pooyan & Mojaddam, Mohammad & Majidi, Sahand, 2022. "Numerical and experimental study of the ducted diffuser effect on improving the aerodynamic performance of a micro horizontal axis wind turbine," Energy, Elsevier, vol. 245(C).
    12. Han, Wanlong & Yan, Peigang & Han, Wanjin & He, Yurong, 2015. "Design of wind turbines with shroud and lobed ejectors for efficient utilization of low-grade wind energy," Energy, Elsevier, vol. 89(C), pages 687-701.
    13. Su, Jie & Chen, Yaoran & Han, Zhaolong & Zhou, Dai & Bao, Yan & Zhao, Yongsheng, 2020. "Investigation of V-shaped blade for the performance improvement of vertical axis wind turbines," Applied Energy, Elsevier, vol. 260(C).
    14. Wang, Y. & Sun, X.J. & Zhu, B. & Zhang, H.J. & Huang, D.G., 2016. "Effect of blade vortex interaction on performance of Darrieus-type cross flow marine current turbine," Renewable Energy, Elsevier, vol. 86(C), pages 316-323.
    15. Xu, He-Yong & Qiao, Chen-Liang & Yang, Hui-Qiang & Ye, Zheng-Yin, 2017. "Delayed detached eddy simulation of the wind turbine airfoil S809 for angles of attack up to 90 degrees," Energy, Elsevier, vol. 118(C), pages 1090-1109.
    16. Huang, Huilan & Luo, Jiabin & Li, Gang, 2023. "Study on the optimal design of vertical axis wind turbine with novel variable solidity type for self-starting capability and aerodynamic performance," Energy, Elsevier, vol. 271(C).
    17. Sun, Jinjing & Sun, Xiaojing & Huang, Diangui, 2020. "Aerodynamics of vertical-axis wind turbine with boundary layer suction – Effects of suction momentum," Energy, Elsevier, vol. 209(C).
    18. Ghasemian, Masoud & Nejat, Amir, 2015. "Aero-acoustics prediction of a vertical axis wind turbine using Large Eddy Simulation and acoustic analogy," Energy, Elsevier, vol. 88(C), pages 711-717.
    19. Trivellato, F. & Raciti Castelli, M., 2014. "On the Courant–Friedrichs–Lewy criterion of rotating grids in 2D vertical-axis wind turbine analysis," Renewable Energy, Elsevier, vol. 62(C), pages 53-62.
    20. Singh, Enderaaj & Roy, Sukanta & Yam, Ke San & Law, Ming Chiat, 2023. "Numerical analysis of H-Darrieus vertical axis wind turbines with varying aspect ratios for exhaust energy extractions," Energy, Elsevier, vol. 277(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:51:y:2013:i:c:p:101-112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.