IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v216y2023ics0960148123010030.html
   My bibliography  Save this article

Aerodynamic analysis of a novel pitch control strategy and parameter combination for vertical axis wind turbines

Author

Listed:
  • Zhang, Qiang
  • Bashir, Musa
  • Miao, Weipao
  • Liu, Qingsong
  • Li, Chun
  • Yue, Minnan
  • Wang, Peilin

Abstract

The performance of a vertical axis wind turbine (VAWT) deteriorates at low tip speed ratios (TSR) and it is mainly characterized by flow separation and dynamic stall. Several mitigating techniques have been developed recently based on flow separation and dynamic stall research activities. One of such techniques is the use of blade pitch angle control, which shows very promising optimal performance in VAWTs. However, its adaptation for periodic variation of the angle of attack remains an important issue that needs to be addressed urgently. Therefore, this paper proposes a novel pitch control strategy based on the VAWT-shape pitch motion to achieve blade dynamic pitch with the rotational parameters (TSR and azimuth angle). The pitch scale factor (μ) is introduced to proportionally vary the angle of attack. High accuracy computational fluid dynamics (CFD) methods are used to simulate dynamic changes in pitch angle, flow field and vortex shedding vorticity, with the turbulence modelled using the SST k-ω model. The results show that a 146% increase in power coefficient can be achieved using a μ of 0.3 at TSR of 1.25. Additionally, the use of dual pitch scale factors (dpsf) in the windward and leeward regions causes intense transient torque fluctuations at 0° (360°) and 180° azimuths due to a breaking distance in pitch angular velocity at these azimuths. Adding a weight function into the fitting process of the dpsf pitch curve effectively minimize these fluctuations.

Suggested Citation

  • Zhang, Qiang & Bashir, Musa & Miao, Weipao & Liu, Qingsong & Li, Chun & Yue, Minnan & Wang, Peilin, 2023. "Aerodynamic analysis of a novel pitch control strategy and parameter combination for vertical axis wind turbines," Renewable Energy, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:renene:v:216:y:2023:i:c:s0960148123010030
    DOI: 10.1016/j.renene.2023.119089
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123010030
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leonczuk Minetto, Robert Alexis & Paraschivoiu, Marius, 2020. "Simulation based analysis of morphing blades applied to a vertical axis wind turbine," Energy, Elsevier, vol. 202(C).
    2. Thumthae, Chalothorn & Chitsomboon, Tawit, 2009. "Optimal angle of attack for untwisted blade wind turbine," Renewable Energy, Elsevier, vol. 34(5), pages 1279-1284.
    3. Daróczy, László & Janiga, Gábor & Petrasch, Klaus & Webner, Michael & Thévenin, Dominique, 2015. "Comparative analysis of turbulence models for the aerodynamic simulation of H-Darrieus rotors," Energy, Elsevier, vol. 90(P1), pages 680-690.
    4. Bundi, Josephat Machoka & Ban, Xiaojun & Wekesa, David Wafula & Ding, Shuchen, 2020. "Pitch control of small H-type Darrieus vertical axis wind turbines using advanced gain scheduling techniques," Renewable Energy, Elsevier, vol. 161(C), pages 756-765.
    5. Ardaneh, Fatemeh & Abdolahifar, Abolfazl & Karimian, S.M.H., 2022. "Numerical analysis of the pitch angle effect on the performance improvement and flow characteristics of the 3-PB Darrieus vertical axis wind turbine," Energy, Elsevier, vol. 239(PD).
    6. Li, Qing’an & Maeda, Takao & Kamada, Yasunari & Murata, Junsuke & Shimizu, Kento & Ogasawara, Tatsuhiko & Nakai, Alisa & Kasuya, Takuji, 2016. "Effect of solidity on aerodynamic forces around straight-bladed vertical axis wind turbine by wind tunnel experiments (depending on number of blades)," Renewable Energy, Elsevier, vol. 96(PA), pages 928-939.
    7. Tjiu, Willy & Marnoto, Tjukup & Mat, Sohif & Ruslan, Mohd Hafidz & Sopian, Kamaruzzaman, 2015. "Darrieus vertical axis wind turbine for power generation I: Assessment of Darrieus VAWT configurations," Renewable Energy, Elsevier, vol. 75(C), pages 50-67.
    8. Rockel, Stanislav & Peinke, Joachim & Hölling, Michael & Cal, Raúl Bayoán, 2016. "Wake to wake interaction of floating wind turbine models in free pitch motion: An eddy viscosity and mixing length approach," Renewable Energy, Elsevier, vol. 85(C), pages 666-676.
    9. Schönborn, Alessandro & Chantzidakis, Matthew, 2007. "Development of a hydraulic control mechanism for cyclic pitch marine current turbines," Renewable Energy, Elsevier, vol. 32(4), pages 662-679.
    10. Sagharichi, A. & Zamani, M. & Ghasemi, A., 2018. "Effect of solidity on the performance of variable-pitch vertical axis wind turbine," Energy, Elsevier, vol. 161(C), pages 753-775.
    11. Abdalrahman, Gebreel & Melek, William & Lien, Fue-Sang, 2017. "Pitch angle control for a small-scale Darrieus vertical axis wind turbine with straight blades (H-Type VAWT)," Renewable Energy, Elsevier, vol. 114(PB), pages 1353-1362.
    12. Belabes, Belkacem & Paraschivoiu, Marius, 2021. "Numerical study of the effect of turbulence intensity on VAWT performance," Energy, Elsevier, vol. 233(C).
    13. Rezaeiha, Abdolrahim & Kalkman, Ivo & Blocken, Bert, 2017. "Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine," Applied Energy, Elsevier, vol. 197(C), pages 132-150.
    14. Li, Chao & Xiao, Yiqing & Xu, You-lin & Peng, Yi-xin & Hu, Gang & Zhu, Songye, 2018. "Optimization of blade pitch in H-rotor vertical axis wind turbines through computational fluid dynamics simulations," Applied Energy, Elsevier, vol. 212(C), pages 1107-1125.
    15. Wang, Zhenyu & Zhuang, Mei, 2017. "Leading-edge serrations for performance improvement on a vertical-axis wind turbine at low tip-speed-ratios," Applied Energy, Elsevier, vol. 208(C), pages 1184-1197.
    16. Ma, Ning & Lei, Hang & Han, Zhaolong & Zhou, Dai & Bao, Yan & Zhang, Kai & Zhou, Lei & Chen, Caiyong, 2018. "Airfoil optimization to improve power performance of a high-solidity vertical axis wind turbine at a moderate tip speed ratio," Energy, Elsevier, vol. 150(C), pages 236-252.
    17. Zhang, Lijun & Gu, Jiawei & Zhu, Huaibao & Hu, Kuoliang & Li, Xiang & Jiao, Liuyang & Miao, Junjie & Liu, Jing & Wang, Zhiwei, 2021. "Rationality research of the adjustment law for the blade pitch angle of H-type vertical-axis wind turbines," Renewable Energy, Elsevier, vol. 167(C), pages 484-496.
    18. Zhang, Lijun & Miao, Junjie & Gu, Jiawei & Li, Xiang & Hu, Kuoliang & Zhu, Huaibao & Sun, Xuefa & Liu, Jing & Liu, Yanxin & Wang, Zhiwei, 2021. "A method of reducing the radial load of the shaft of a vertical axis wind turbine based on movable mass blocks," Renewable Energy, Elsevier, vol. 175(C), pages 952-964.
    19. Bayati, Ilmas & Foletti, Stefano & Tarsitano, Davide & Belloli, Marco, 2018. "A reference open data vertical axis wind turbine, with individual pitch control, for code validation purposes," Renewable Energy, Elsevier, vol. 115(C), pages 711-720.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shen, Zhuang & Gong, Shuguang & Xie, Guilan & Lu, Haishan & Guo, Weiyu, 2024. "Investigation of the effect of critical structural parameters on the aerodynamic performance of the double darrieus vertical axis wind turbine," Energy, Elsevier, vol. 290(C).
    2. Wenxing Hao & Abdulshakur Abdi & Guobiao Wang & Fuzhong Wu, 2023. "Study on the Pitch Angle Effect on the Power Coefficient and Blade Fatigue Load of a Vertical Axis Wind Turbine," Energies, MDPI, vol. 16(21), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, Antim & Abderrahmane, Hamid Ait & Janajreh, Isam, 2024. "Flow analysis and sensitivity study of vertical-axis wind turbine under variable pitching," Applied Energy, Elsevier, vol. 358(C).
    2. Xu, Zhongyun & Chen, Jian & Li, Chun, 2023. "Research on the adaptability of dynamic pitch control strategies on H-type VAWT close-range arrays by simulation study," Renewable Energy, Elsevier, vol. 218(C).
    3. Hand, Brian & Kelly, Ger & Cashman, Andrew, 2021. "Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    4. Baghdadi, M. & Elkoush, S. & Akle, B. & Elkhoury, M., 2020. "Dynamic shape optimization of a vertical-axis wind turbine via blade morphing technique," Renewable Energy, Elsevier, vol. 154(C), pages 239-251.
    5. Barnes, Andrew & Marshall-Cross, Daniel & Hughes, Ben Richard, 2021. "Towards a standard approach for future Vertical Axis Wind Turbine aerodynamics research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    6. Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2018. "Towards optimal aerodynamic design of vertical axis wind turbines: Impact of solidity and number of blades," Energy, Elsevier, vol. 165(PB), pages 1129-1148.
    7. Sun, Jinjing & Sun, Xiaojing & Huang, Diangui, 2020. "Aerodynamics of vertical-axis wind turbine with boundary layer suction – Effects of suction momentum," Energy, Elsevier, vol. 209(C).
    8. Singh, Enderaaj & Roy, Sukanta & Yam, Ke San & Law, Ming Chiat, 2023. "Numerical analysis of H-Darrieus vertical axis wind turbines with varying aspect ratios for exhaust energy extractions," Energy, Elsevier, vol. 277(C).
    9. Ravi Pandit & David Infield, 2018. "Gaussian Process Operational Curves for Wind Turbine Condition Monitoring," Energies, MDPI, vol. 11(7), pages 1-20, June.
    10. Pereira, T.R. & Batista, N.C. & Fonseca, A.R.A. & Cardeira, C. & Oliveira, P. & Melicio, R., 2018. "Darrieus wind turbine prototype: Dynamic modeling parameter identification and control analysis," Energy, Elsevier, vol. 159(C), pages 961-976.
    11. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    12. Chen, Jian & Pan, Xiong & Wang, Canxing & Hu, Guojun & Xu, Hongtao & Liu, Pengwei, 2019. "Airfoil parameterization evaluation based on a modified PARASEC method for a H-Darrious rotor," Energy, Elsevier, vol. 187(C).
    13. Sagharichi, A. & Zamani, M. & Ghasemi, A., 2018. "Effect of solidity on the performance of variable-pitch vertical axis wind turbine," Energy, Elsevier, vol. 161(C), pages 753-775.
    14. Chong, Wen-Tong & Muzammil, Wan Khairul & Wong, Kok-Hoe & Wang, Chin-Tsan & Gwani, Mohammed & Chu, Yung-Jeh & Poh, Sin-Chew, 2017. "Cross axis wind turbine: Pushing the limit of wind turbine technology with complementary design," Applied Energy, Elsevier, vol. 207(C), pages 78-95.
    15. Ardaneh, Fatemeh & Abdolahifar, Abolfazl & Karimian, S.M.H., 2022. "Numerical analysis of the pitch angle effect on the performance improvement and flow characteristics of the 3-PB Darrieus vertical axis wind turbine," Energy, Elsevier, vol. 239(PD).
    16. Wang, Ying & Shen, Sheng & Li, Gaohui & Huang, Diangui & Zheng, Zhongquan, 2018. "Investigation on aerodynamic performance of vertical axis wind turbine with different series airfoil shapes," Renewable Energy, Elsevier, vol. 126(C), pages 801-818.
    17. Leonczuk Minetto, Robert Alexis & Paraschivoiu, Marius, 2020. "Simulation based analysis of morphing blades applied to a vertical axis wind turbine," Energy, Elsevier, vol. 202(C).
    18. Abdolahifar, Abolfazl & Karimian, S.M.H., 2022. "A comprehensive three-dimensional study on Darrieus vertical axis wind turbine with slotted blade to reduce flow separation," Energy, Elsevier, vol. 248(C).
    19. Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2019. "On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines," Energy, Elsevier, vol. 180(C), pages 838-857.
    20. Jafari, Mohammad & Razavi, Alireza & Mirhosseini, Mojtaba, 2018. "Effect of airfoil profile on aerodynamic performance and economic assessment of H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 165(PA), pages 792-810.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:216:y:2023:i:c:s0960148123010030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.