Machine Learning-Based Prediction of 2 MW Wind Turbine Tower Loads During Power Production Based on Nacelle Behavior
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- de N Santos, Francisco & D’Antuono, Pietro & Robbelein, Koen & Noppe, Nymfa & Weijtjens, Wout & Devriendt, Christof, 2023. "Long-term fatigue estimation on offshore wind turbines interface loads through loss function physics-guided learning of neural networks," Renewable Energy, Elsevier, vol. 205(C), pages 461-474.
- Avendaño-Valencia, Luis David & Abdallah, Imad & Chatzi, Eleni, 2021. "Virtual fatigue diagnostics of wake-affected wind turbine via Gaussian Process Regression," Renewable Energy, Elsevier, vol. 170(C), pages 539-561.
- Pimenta, Francisco & Ribeiro, Daniel & Román, Adela & Magalhães, Filipe, 2024. "Predictive model for fatigue evaluation of floating wind turbines validated with experimental data," Renewable Energy, Elsevier, vol. 223(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cheng, Biyi & Yao, Yingxue & Qu, Xiaobin & Zhou, Zhiming & Wei, Jionghui & Liang, Ertang & Zhang, Chengcheng & Kang, Hanwen & Wang, Hongjun, 2024. "Multi-objective parameter optimization of large-scale offshore wind Turbine's tower based on data-driven model with deep learning and machine learning methods," Energy, Elsevier, vol. 305(C).
- Ren, Chao & Xing, Yihan, 2023. "AK-MDAmax: Maximum fatigue damage assessment of wind turbine towers considering multi-location with an active learning approach," Renewable Energy, Elsevier, vol. 215(C).
- Moynihan, Bridget & Tronci, Eleonora M. & Hughes, Michael C. & Moaveni, Babak & Hines, Eric, 2024. "Virtual sensing via Gaussian Process for bending moment response prediction of an offshore wind turbine using SCADA data," Renewable Energy, Elsevier, vol. 227(C).
- Chen, Peng & Han, Dezhi, 2022. "Effective wind speed estimation study of the wind turbine based on deep learning," Energy, Elsevier, vol. 247(C).
- Zhang, Xiaofeng & Wang, Qiang & Ye, Shitong & Luo, Kun & Fan, Jianren, 2024. "Efficient layout optimization of offshore wind farm based on load surrogate model and genetic algorithm," Energy, Elsevier, vol. 309(C).
- Deng, Wanru & Liu, Liqin & Dai, Yuanjun & Wu, Haitao & Yuan, Zhiming, 2024. "A prediction method for blade deformations of large-scale FVAWTs using dynamics theory and machine learning techniques," Energy, Elsevier, vol. 304(C).
- Liu, Ding Peng & Ferri, Giulio & Heo, Taemin & Marino, Enzo & Manuel, Lance, 2024. "On long-term fatigue damage estimation for a floating offshore wind turbine using a surrogate model," Renewable Energy, Elsevier, vol. 225(C).
- de N Santos, Francisco & D’Antuono, Pietro & Robbelein, Koen & Noppe, Nymfa & Weijtjens, Wout & Devriendt, Christof, 2023. "Long-term fatigue estimation on offshore wind turbines interface loads through loss function physics-guided learning of neural networks," Renewable Energy, Elsevier, vol. 205(C), pages 461-474.
- Sulaiman Hurubi & Hannah Mullings & Pablo Ouro & Peter Stansby & Tim Stallard, 2025. "Unsteady Loading on a Tidal Turbine Due to the Turbulent Wake of an Upstream Turbine Interacting with a Seabed Ridge," Energies, MDPI, vol. 18(1), pages 1-24, January.
- Cuauhtemoc Acosta Lúa & Domenico Bianchi & Salvador Martín Baragaño & Mario Di Ferdinando & Stefano Di Gennaro, 2023. "Robust Nonlinear Control of a Wind Turbine with a Permanent Magnet Synchronous Generator," Energies, MDPI, vol. 16(18), pages 1-19, September.
- Karthikvel Elangovan & S. Nadaraja Pillai, 2025. "Effect of Pitch Angle on Structural and Aerodynamic Characteristics of Vertical-Axis Wind Turbines (VAWTs) Using Leading-Edge Protuberance Blades," Energies, MDPI, vol. 18(2), pages 1-28, January.
- Dao, Fang & Zeng, Yun & Qian, Jing, 2024. "Fault diagnosis of hydro-turbine via the incorporation of bayesian algorithm optimized CNN-LSTM neural network," Energy, Elsevier, vol. 290(C).
- Bai, Guan & Feng, Yaojing & Ma, Zi-Qian & Li, Xueping, 2024. "An asynchronous distributed optimal wake control scheme for suppressing fatigue load and increasing power extraction in wind farms," Renewable Energy, Elsevier, vol. 232(C).
More about this item
Keywords
wind turbine; load; machine learning; linear regression; extra trees regressor; nacelle behavior;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:1:p:216-:d:1561137. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.