IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i9p2011-d1381747.html
   My bibliography  Save this article

Estimation of Fuel Properties for the Heavy Fraction of Biomass Pyrolysis Oil Consisting of Proposed Structures for Pyrolytic Lignin and Humins

Author

Listed:
  • Evan Terrell

    (U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA 70124, USA)

Abstract

The organic component of biomass pyrolysis oils is composed of a light fraction (C2–C4 volatiles, sugar- and lignin-derived monomers) and a less polar heavy fraction (pyrolytic lignin/humins, greater than approximately 200 g/mol). Importantly, this heavy fraction can account for roughly one-third to one-half of the total pyrolysis oil. While the composition and characteristics of the light fraction are generally well understood, research is still needed for the characterization of the heavy fraction. Some important thermodynamic fuel properties of this fraction are the heat of combustion, normal boiling point, heat of vaporization, and flash point, which are (computationally) estimated in this work with regularized regression and empirical correlations. The quantification of these properties has implications on downstream utilization, particularly in the context of co-processing bio-oils with plastic and coal liquefaction products and/or crude petroleum. Finally, challenges and opportunities for (experimental) work are discussed for the advancement of sustainable valorization of biomass pyrolysis oils.

Suggested Citation

  • Evan Terrell, 2024. "Estimation of Fuel Properties for the Heavy Fraction of Biomass Pyrolysis Oil Consisting of Proposed Structures for Pyrolytic Lignin and Humins," Energies, MDPI, vol. 17(9), pages 1-16, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2011-:d:1381747
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/9/2011/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/9/2011/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mika Pahnila & Aki Koskela & Petri Sulasalmi & Timo Fabritius, 2023. "A Review of Pyrolysis Technologies and the Effect of Process Parameters on Biocarbon Properties," Energies, MDPI, vol. 16(19), pages 1-27, October.
    2. Hu, Xun & Gholizadeh, Mortaza, 2020. "Progress of the applications of bio-oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Marathe, P.S. & Westerhof, R.J.M. & Kersten, S.R.A., 2019. "Fast pyrolysis of lignins with different molecular weight: Experiments and modelling," Applied Energy, Elsevier, vol. 236(C), pages 1125-1137.
    4. Burl Donaldson & Brian Hughes & Eric N. Coker & Nadir Yilmaz, 2023. "Pyrolysis of Oils from Unconventional Resources," Energies, MDPI, vol. 16(8), pages 1-16, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Hangli & Luo, Yanru & Zou, Jianfeng & Zhang, Shukai & Yellezuome, Dominic & Rahman, Md Maksudur & Li, Yingkai & Li, Chong & Cai, Junmeng, 2022. "Exploring aging kinetic mechanisms of bio-oil from biomass pyrolysis based on change in carbonyl content," Renewable Energy, Elsevier, vol. 199(C), pages 782-790.
    2. Huang, Youwang & Wang, Haiyong & Zhang, Xinghua & Zhang, Qi & Wang, Chenguang & Ma, Longlong, 2022. "Accurate prediction of chemical exergy of technical lignins for exergy-based assessment on sustainable utilization processes," Energy, Elsevier, vol. 243(C).
    3. Mayank Patel & Nick Hill & Charles A. Mullen & Sampath Gunukula & William J. DeSisto, 2020. "Fast Pyrolysis of Lignin Pretreated with Magnesium Formate and Magnesium Hydroxide," Energies, MDPI, vol. 13(19), pages 1-10, September.
    4. Liu, Shasha & Wu, Gang & Gao, Yi & Li, Bin & Feng, Yu & Zhou, Jianbin & Hu, Xun & Huang, Yong & Zhang, Shu & Zhang, Hong, 2021. "Understanding the catalytic upgrading of bio-oil from pine pyrolysis over CO2-activated biochar," Renewable Energy, Elsevier, vol. 174(C), pages 538-546.
    5. Roksana Muzyka & Szymon Sobek & Mariusz Dudziak & Miloud Ouadi & Marcin Sajdak, 2023. "A Comparative Analysis of Waste Biomass Pyrolysis in Py-GC-MS and Fixed-Bed Reactors," Energies, MDPI, vol. 16(8), pages 1-15, April.
    6. Li, Chao & Sun, Yifan & Yi, Zijun & Zhang, Lijun & Zhang, Shu & Hu, Xun, 2022. "Co-pyrolysis of coke bottle wastes with cellulose, lignin and sawdust: Impacts of the mixed feedstock on char properties," Renewable Energy, Elsevier, vol. 181(C), pages 1126-1139.
    7. Wojciech Jerzak & Esther Acha & Bin Li, 2024. "Comprehensive Review of Biomass Pyrolysis: Conventional and Advanced Technologies, Reactor Designs, Product Compositions and Yields, and Techno-Economic Analysis," Energies, MDPI, vol. 17(20), pages 1-31, October.
    8. Guzelciftci, Begum & Park, Ki-Bum & Kim, Joo-Sik, 2020. "Production of phenol-rich bio-oil via a two-stage pyrolysis of wood," Energy, Elsevier, vol. 200(C).
    9. Huang, Dexin & Song, Gongxiang & Li, Ruochen & Han, Hengda & He, Limo & Jiang, Long & Wang, Yi & Su, Sheng & Hu, Song & Xiang, Jun, 2023. "Evolution mechanisms of bio-oil from conventional and nitrogen-rich biomass during photo-thermal pyrolysis," Energy, Elsevier, vol. 282(C).
    10. Ping Fa Chiang & Shanshan Han & Mugabekazi Joie Claire & Ndungutse Jean Maurice & Mohammadtaghi Vakili & Abdulmoseen Segun Giwa, 2024. "Sustainable Treatment of Spent Photovoltaic Solar Panels Using Plasma Pyrolysis Technology and Its Economic Significance," Clean Technol., MDPI, vol. 6(2), pages 1-21, April.
    11. Fan, Liangliang & Ruan, Roger & Li, Jun & Ma, Longlong & Wang, Chenguang & Zhou, Wenguang, 2020. "Aromatics production from fast co-pyrolysis of lignin and waste cooking oil catalyzed by HZSM-5 zeolite," Applied Energy, Elsevier, vol. 263(C).
    12. Diego Voccia & Lucrezia Lamastra, 2024. "Unpacking the Carbon Balance: Biochar Production from Forest Residues and Its Impact on Sustainability," Energies, MDPI, vol. 17(18), pages 1-11, September.
    13. Hemant Ghai & Deepak Sakhuja & Shikha Yadav & Preeti Solanki & Chayanika Putatunda & Ravi Kant Bhatia & Arvind Kumar Bhatt & Sunita Varjani & Yung-Hun Yang & Shashi Kant Bhatia & Abhishek Walia, 2022. "An Overview on Co-Pyrolysis of Biodegradable and Non-Biodegradable Wastes," Energies, MDPI, vol. 15(11), pages 1-27, June.
    14. Zheng, Ji-Lu & Zhu, Ya-Hong & Su, Hong-Yu & Sun, Guo-Tao & Kang, Fu-Ren & Zhu, Ming-Qiang, 2022. "Life cycle assessment and techno-economic analysis of fuel ethanol production via bio-oil fermentation based on a centralized-distribution model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    15. Jiaao Zhu & Yun Guo & Na Chen & Baoming Chen, 2024. "A Review of the Efficient and Thermal Utilization of Biomass Waste," Sustainability, MDPI, vol. 16(21), pages 1-30, October.
    16. Liaqat Ali & Khurshid Ahmed Baloch & Arkom Palamanit & Shan Ali Raza & Sawanya Laohaprapanon & Kuaanan Techato, 2021. "Physicochemical Characterisation and the Prospects of Biofuel Production from Rubberwood Sawdust and Sewage Sludge," Sustainability, MDPI, vol. 13(11), pages 1-16, May.
    17. Li, Haowei & Ma, Hongwei & Zhao, Weijie & Li, Xuehui & Long, Jinxing, 2019. "Upgrading lignin bio-oil for oxygen-containing fuel production using Ni/MgO: Effect of the catalyst calcination temperature," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    18. Marcin Landrat & Mamo Abawalo & Krzysztof Pikoń & Paulos Asefa Fufa & Semira Seyid, 2024. "Assessing the Potential of Teff Husk for Biochar Production through Slow Pyrolysis: Effect of Pyrolysis Temperature on Biochar Yield," Energies, MDPI, vol. 17(9), pages 1-17, April.
    19. Ghita Bennani & Adama Ndao & Delon Konan & Patrick Brassard & Étienne Le Roux & Stéphane Godbout & Kokou Adjallé, 2023. "Valorisation of Cranberry Residues through Pyrolysis and Membrane Filtration for the Production of Value-Added Agricultural Products," Energies, MDPI, vol. 16(23), pages 1-17, November.
    20. Sabah Mariyam & Mohammad Alherbawi & Naim Rashid & Tareq Al-Ansari & Gordon McKay, 2022. "Bio-Oil Production from Multi-Waste Biomass Co-Pyrolysis Using Analytical Py–GC/MS," Energies, MDPI, vol. 15(19), pages 1-10, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2011-:d:1381747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.