IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i7p1657-d1367266.html
   My bibliography  Save this article

Replacing Natural Gas with Biomethane from Sewage Treatment: Optimizing the Potential in São Paulo State, Brazil

Author

Listed:
  • Natalia dos Santos Renato

    (Department of Agricultural Engineering, Federal University of Viçosa, Viçosa 36570900, Brazil
    These authors contributed equally to this work.)

  • Augusto Cesar Laviola de Oliveira

    (Department of Agricultural Engineering, Federal University of Viçosa, Viçosa 36570900, Brazil
    These authors contributed equally to this work.)

  • Amanda Martins Teixeira Ervilha

    (Department of Agricultural Engineering, Federal University of Viçosa, Viçosa 36570900, Brazil)

  • Sarah Falchetto Antoniazzi

    (Department of Agricultural Engineering, Federal University of Viçosa, Viçosa 36570900, Brazil)

  • Julia Moltó

    (Department of Chemical Engineering, University of Alicante, 03080 Alicante, Spain)

  • Juan Antonio Conesa

    (Department of Chemical Engineering, University of Alicante, 03080 Alicante, Spain)

  • Alisson Carraro Borges

    (Department of Agricultural Engineering, Federal University of Viçosa, Viçosa 36570900, Brazil)

Abstract

The search for cleaner and more sustainable energy sources is increasingly growing. Aligning this demand with another environmental problem, such as sewage treatment/disposal, is a strategic priority. In light of this, the aim of this study was to estimate the energy potential of sewage generated in the Brazilian state of São Paulo (SP) by using it to produce biomethane. The study also evaluated the viability of using this byproduct of sewage treatment (biomethane) as a substitute for natural gas (NG), as both of them have similar lower heat values. To do this, information was gathered regarding the population, gross domestic product per capita, sewage collected, and natural gas consumption for each of the state’s 645 cities, and, based on this, the sewage energy potential, the amount of NG to be substituted by biomethane, and the reduction in CO 2 emissions were calculated. Moreover, in order to address a possible allocation of biomethane that could potentially be produced in each SP city and sent to currently NG-consuming cities, an optimization algorithm was proposed. The results indicated a sewage energy potential of 4.68 × 10 9 kWh/yr for the entire SP state, which would be enough to supply around 10% of the energy value of all the NG currently consumed. It was also observed that from 130 cities with NG consumption, 10 could produce enough biomethane to fully satisfy the natural gas demand. In the elected scenario of optimization, 291 cities were found to be capable of supplying the demand of 26 cities that currently use NG. The potential to reduce CO 2 emissions is between 1.81 × 10 6 and 2.42 × 10 6 ton/yr, and this range could increase if sewage treatment coverage grows. Despite the challenges inherent in extrapolating a potential study to scenarios that require significative investment, the results obtained are useful for formulating public policies for decarbonization in the near future.

Suggested Citation

  • Natalia dos Santos Renato & Augusto Cesar Laviola de Oliveira & Amanda Martins Teixeira Ervilha & Sarah Falchetto Antoniazzi & Julia Moltó & Juan Antonio Conesa & Alisson Carraro Borges, 2024. "Replacing Natural Gas with Biomethane from Sewage Treatment: Optimizing the Potential in São Paulo State, Brazil," Energies, MDPI, vol. 17(7), pages 1-11, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1657-:d:1367266
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/7/1657/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/7/1657/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nazari, S. & Shahhoseini, O. & Sohrabi-Kashani, A. & Davari, S. & Paydar, R. & Delavar-Moghadam, Z., 2010. "Experimental determination and analysis of CO2, SO2 and NOx emission factors in Iran’s thermal power plants," Energy, Elsevier, vol. 35(7), pages 2992-2998.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian, Yuan & Scherer, Laura & Tukker, Arnold & Behrens, Paul, 2020. "China's potential SO2 emissions from coal by 2050," Energy Policy, Elsevier, vol. 147(C).
    2. Mojtaba Jorli & Steven Van Passel & Hossein Sadeghi & Alireza Nasseri & Lotfali Agheli, 2017. "Estimating Human Health Impacts and Costs Due to Iranian Fossil Fuel Power Plant Emissions through the Impact Pathway Approach," Energies, MDPI, vol. 10(12), pages 1-29, December.
    3. Safieddin Ardebili, Seyed Mohammad, 2020. "Green electricity generation potential from biogas produced by anaerobic digestion of farm animal waste and agriculture residues in Iran," Renewable Energy, Elsevier, vol. 154(C), pages 29-37.
    4. Jingbiao Yang & Shengxiang Deng & Hui Xu & Ye Zhao & Changda Nie & Yongju He, 2021. "Investigation and Practical Application of Silica Nanoparticles Composite Underwater Repairing Materials," Energies, MDPI, vol. 14(9), pages 1-10, April.
    5. Akpan, P.U. & Fuls, W.F., 2021. "Cycling of coal fired power plants: A generic CO2 emissions factor model for predicting CO2 emissions," Energy, Elsevier, vol. 214(C).
    6. Oliver, A. & Montero, G. & Montenegro, R. & Rodríguez, E. & Escobar, J.M. & Pérez-Foguet, A., 2013. "Adaptive finite element simulation of stack pollutant emissions over complex terrains," Energy, Elsevier, vol. 49(C), pages 47-60.
    7. Biglarian, Hassan & Abdollahi, Sina, 2022. "Utilization of on-grid photovoltaic panels to offset electricity consumption of a residential ground source heat pump," Energy, Elsevier, vol. 243(C).
    8. Yorgos Spanodimitriou & Giovanni Ciampi & Michelangelo Scorpio & Niloufar Mokhtari & Ainoor Teimoorzadeh & Roberta Laffi & Sergio Sibilio, 2022. "Passive Strategies for Building Retrofitting: Performances Analysis and Incentive Policies for the Iranian Scenario," Energies, MDPI, vol. 15(5), pages 1-22, February.
    9. Eveloy, Valérie & Rodgers, Peter & Qiu, Linyue, 2016. "Performance investigation of a power, heating and seawater desalination poly-generation scheme in an off-shore oil field," Energy, Elsevier, vol. 98(C), pages 26-39.
    10. Dios, M. & Souto, J.A. & Casares, J.J., 2013. "Experimental development of CO2, SO2 and NOx emission factors for mixed lignite and subbituminous coal-fired power plant," Energy, Elsevier, vol. 53(C), pages 40-51.
    11. Mazandarani, A. & Mahlia, T.M.I. & Chong, W.T. & Moghavvemi, M., 2011. "Fuel consumption and emission prediction by Iranian power plants until 2025," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1575-1592, April.
    12. Darvishi, Hosain & Khodaei, Jalal & Behroozi-Khazaei, Nasser & Salami, Payman & Akhijahani, Hadi Samimi, 2023. "Greenhouse gas emission reduction potential, energy and exergy analysis of combined microwave-convective dryer," Energy, Elsevier, vol. 285(C).
    13. Mohammad Alrbai & Sameer Al-Dahidi & Loiy Al-Ghussain & Hassan Hayajneh & Ali Alahmer, 2023. "A Sustainable Wind–Biogas Hybrid System for Remote Areas in Jordan: A Case Study of Mobile Hospital for a Zaatari Syrian Refugee Camp," Sustainability, MDPI, vol. 15(20), pages 1-21, October.
    14. He, Yongxiu & Liu, Yangyang & Wang, Jianhui & Xia, Tian & Zhao, Yushan, 2014. "Low-carbon-oriented dynamic optimization of residential energy pricing in China," Energy, Elsevier, vol. 66(C), pages 610-623.
    15. Diaz-Mendez, S.E. & Torres-Rodríguez, A.A. & Abatal, M. & Soberanis, M.A. Escalante & Bassam, A. & Pedraza-Basulto, G.K., 2018. "Economic, environmental and health co-benefits of the use of advanced control strategies for lighting in buildings of Mexico," Energy Policy, Elsevier, vol. 113(C), pages 401-409.
    16. Yongxiu He & Yangyang Liu & Tian Xia & Min Du & Hongzhen Guo, 2014. "The Optimal Price Ratio of Typical Energy Sources in Beijing Based on the Computable General Equilibrium Model," Energies, MDPI, vol. 7(5), pages 1-24, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1657-:d:1367266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.