IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i7p1508-d1361568.html
   My bibliography  Save this article

Effect of the Addition of Elderberry Waste to Sawdust on the Process of Pelletization and the Quality of Fuel Pellets

Author

Listed:
  • Sławomir Obidziński

    (Department of Agri-Food Engineering and Environmental Management, Bialystok University of Technology, Wiejska 45E, 15-351 Białystok, Poland)

  • Paweł Cwalina

    (Department of Agri-Food Engineering and Environmental Management, Bialystok University of Technology, Wiejska 45E, 15-351 Białystok, Poland)

  • Małgorzata Kowczyk-Sadowy

    (Department of Agri-Food Engineering and Environmental Management, Bialystok University of Technology, Wiejska 45E, 15-351 Białystok, Poland)

  • Aneta Sienkiewicz

    (Department of Agri-Food Engineering and Environmental Management, Bialystok University of Technology, Wiejska 45E, 15-351 Białystok, Poland)

  • Małgorzata Krasowska

    (Department of Agri-Food Engineering and Environmental Management, Bialystok University of Technology, Wiejska 45E, 15-351 Białystok, Poland)

  • Joanna Szyszlak-Bargłowicz

    (Department of Power Engineering and Transportation, Faculty of Production Engineering, University of Life Sciences in Lublin, Głęboka 28, 20-612 Lublin, Poland)

  • Grzegorz Zając

    (Department of Power Engineering and Transportation, Faculty of Production Engineering, University of Life Sciences in Lublin, Głęboka 28, 20-612 Lublin, Poland)

  • Rafał Kryński

    (Department of Agri-Food Engineering and Environmental Management, Bialystok University of Technology, Wiejska 45E, 15-351 Białystok, Poland)

Abstract

This paper presents the results of a study on the process of the pelletization of pine sawdust with the addition of herbaceous waste from elderberry, in the working system of a pellet press with a flat matrix, in the context of producing fuel pellets. Based on the research, the impact of the addition of herbal waste in the form of elderberry waste on the granulation process of pine sawdust and the assessment of the quality of the obtained pellets were determined. The addition of herbaceous waste from elderberry to pine sawdust had a beneficial effect on the kinetic durability of the obtained fuel pellets, with an increase of up to approximately 1.3% (from 98.03 to 99.31%). Based on the obtained results, it can be concluded that the mechanical strength of all the tested pellets is higher than 97.5%, which is consistent with the ISO 17225-1:2021-11 standard. The bulk density of pellets with the addition of herbaceous waste from elderberry increased (from 649.34 to 658.50 kg∙m −3 ) as did their density (from 1231.38 to 1263.90 kg∙m −3 ). The addition of herbaceous waste from elderberry in amounts ranging from 10% to 20% did not have a significant effect on the power requirements of the pelletizer, which decreased compared to the pelletization process of pure pine sawdust. The percentage of this decrease compared to the pelleting process with pure pine sawdust was approximately 10%. The addition of herbaceous waste from elderberry to pine sawdust slightly reduces the energy value (i.e., the heat of combustion and the calorific value) of the obtained pellets. The addition of 30% elderberry waste resulted in a decrease in the heat of combustion from 20.27 to 19.96 MJ·kg d.m. −1 , while the calorific value of the pellets decreased from 19.98 to 18.69 MJ·kg d.m. −1 compared to pine sawdust pellets. Hence, adding herbaceous waste from elderberry seems to be a good way of managing large amounts of waste of this kind generated in herbal processing plants. This method of waste management opens new perspectives towards more sustainable and economically effective energy production.

Suggested Citation

  • Sławomir Obidziński & Paweł Cwalina & Małgorzata Kowczyk-Sadowy & Aneta Sienkiewicz & Małgorzata Krasowska & Joanna Szyszlak-Bargłowicz & Grzegorz Zając & Rafał Kryński, 2024. "Effect of the Addition of Elderberry Waste to Sawdust on the Process of Pelletization and the Quality of Fuel Pellets," Energies, MDPI, vol. 17(7), pages 1-20, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1508-:d:1361568
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/7/1508/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/7/1508/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Verma, V.K. & Bram, S. & Delattin, F. & Laha, P. & Vandendael, I. & Hubin, A. & De Ruyck, J., 2012. "Agro-pellets for domestic heating boilers: Standard laboratory and real life performance," Applied Energy, Elsevier, vol. 90(1), pages 17-23.
    2. Spiru Paraschiv & Daniel-Eduard Constantin & Simona-Lizica Paraschiv & Mirela Voiculescu, 2017. "OMI and Ground-Based In-Situ Tropospheric Nitrogen Dioxide Observations over Several Important European Cities during 2005–2014," IJERPH, MDPI, vol. 14(11), pages 1-10, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mirela Voiculescu & Daniel-Eduard Constantin & Simona Condurache-Bota & Valentina Călmuc & Adrian Roșu & Carmelia Mariana Dragomir Bălănică, 2020. "Role of Meteorological Parameters in the Diurnal and Seasonal Variation of NO 2 in a Romanian Urban Environment," IJERPH, MDPI, vol. 17(17), pages 1-15, August.
    2. El may, Yassine & Jeguirim, Mejdi & Dorge, Sophie & Trouvé, Gwenaelle & Said, Rachid, 2012. "Study on the thermal behavior of different date palm residues: Characterization and devolatilization kinetics under inert and oxidative atmospheres," Energy, Elsevier, vol. 44(1), pages 702-709.
    3. Kraiem, Nesrine & Jeguirim, Mejdi & Limousy, Lionel & Lajili, Marzouk & Dorge, Sophie & Michelin, Laure & Said, Rachid, 2014. "Impregnation of olive mill wastewater on dry biomasses: Impact on chemical properties and combustion performances," Energy, Elsevier, vol. 78(C), pages 479-489.
    4. Sungur, Bilal & Basar, Cem & Kaleli, Alirıza, 2023. "Multi-objective optimisation of the emission parameters and efficiency of pellet stove at different supply airflow positions based on machine learning approach," Energy, Elsevier, vol. 278(PA).
    5. Dávid Nagy & Péter Balogh & Zoltán Gabnai & József Popp & Judit Oláh & Attila Bai, 2018. "Economic Analysis of Pellet Production in Co-Digestion Biogas Plants," Energies, MDPI, vol. 11(5), pages 1-21, May.
    6. Jacek Wasilewski & Grzegorz Zając & Joanna Szyszlak-Bargłowicz & Andrzej Kuranc, 2022. "Evaluation of Greenhouse Gas Emission Levels during the Combustion of Selected Types of Agricultural Biomass," Energies, MDPI, vol. 15(19), pages 1-14, October.
    7. Carlon, Elisa & Verma, Vijay Kumar & Schwarz, Markus & Golicza, Laszlo & Prada, Alessandro & Baratieri, Marco & Haslinger, Walter & Schmidl, Christoph, 2015. "Experimental validation of a thermodynamic boiler model under steady state and dynamic conditions," Applied Energy, Elsevier, vol. 138(C), pages 505-516.
    8. Marta Jach-Nocoń & Grzegorz Pełka & Wojciech Luboń & Tomasz Mirowski & Adam Nocoń & Przemysław Pachytel, 2021. "An Assessment of the Efficiency and Emissions of a Pellet Boiler Combusting Multiple Pellet Types," Energies, MDPI, vol. 14(15), pages 1-15, July.
    9. Huilu Yu & Youning Yan & Suocheng Dong, 2019. "A System Dynamics Model to Assess the Effectiveness of Governmental Support Policies for Renewable Electricity," Sustainability, MDPI, vol. 11(12), pages 1-27, June.
    10. Araceli Regueiro & Lucie Jezerská & David Patiño & Raquel Pérez-Orozco & Jan Nečas & Martin Žídek, 2017. "Experimental Study of the Viability of Low-Grade Biofuels in Small-Scale Appliances," Sustainability, MDPI, vol. 9(10), pages 1-16, October.
    11. Vicente, E.D. & Vicente, A.M. & Evtyugina, M. & Tarelho, L.A.C. & Almeida, S.M. & Alves, C., 2020. "Emissions from residential combustion of certified and uncertified pellets," Renewable Energy, Elsevier, vol. 161(C), pages 1059-1071.
    12. Kougioumtzis, Michael Alexandros & Kanaveli, Ioanna Panagiota & Karampinis, Emmanouil & Grammelis, Panagiotis & Kakaras, Emmanuel, 2021. "Combustion of olive tree pruning pellets versus sunflower husk pellets at industrial boiler. Monitoring of emissions and combustion efficiency," Renewable Energy, Elsevier, vol. 171(C), pages 516-525.
    13. Liu, Zhengang & Quek, Augustine & Balasubramanian, R., 2014. "Preparation and characterization of fuel pellets from woody biomass, agro-residues and their corresponding hydrochars," Applied Energy, Elsevier, vol. 113(C), pages 1315-1322.
    14. Stanisławski, Rafał & Robert Junga, & Nitsche, Marek, 2022. "Reduction of the CO emission from wood pellet small-scale boiler using model-based control," Energy, Elsevier, vol. 243(C).
    15. Sungur, Bilal & Topaloğlu, Bahattin, 2020. "Experimental analysis of combustion performance of biodiesel absorbed pellets in a domestic boiler," Energy, Elsevier, vol. 201(C).
    16. Algirdas Jasinskas & Ramūnas Mieldažys & Eglė Jotautienė & Rolandas Domeika & Edvardas Vaiciukevičius & Marek Marks, 2020. "Technical, Environmental, and Qualitative Assessment of the Oak Waste Processing and Its Usage for Energy Conversion," Sustainability, MDPI, vol. 12(19), pages 1-14, October.
    17. Díaz-Ramírez, Maryori & Sebastián, Fernando & Royo, Javier & Rezeau, Adeline, 2014. "Influencing factors on NOX emission level during grate conversion of three pelletized energy crops," Applied Energy, Elsevier, vol. 115(C), pages 360-373.
    18. Li, Hui & Liu, Xinhua & Legros, Robert & Bi, Xiaotao T. & Jim Lim, C. & Sokhansanj, Shahab, 2012. "Pelletization of torrefied sawdust and properties of torrefied pellets," Applied Energy, Elsevier, vol. 93(C), pages 680-685.
    19. Anna Laura Pisello & Claudia Fabiani & Nastaran Makaremi & Veronica Lucia Castaldo & Gianluca Cavalaglio & Andrea Nicolini & Marco Barbanera & Franco Cotana, 2016. "Sustainable New Brick and Thermo-Acoustic Insulation Panel from Mineralization of Stranded Driftwood Residues," Energies, MDPI, vol. 9(8), pages 1-20, August.
    20. Valentyna Stanytsina & Volodymyr Artemchuk & Olga Bogoslavska & Artur Zaporozhets & Antonina Kalinichenko & Jan Stebila & Valerii Havrysh & Dariusz Suszanowicz, 2022. "Fossil Fuel and Biofuel Boilers in Ukraine: Trends of Changes in Levelized Cost of Heat," Energies, MDPI, vol. 15(19), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1508-:d:1361568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.