IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i8p619-d75342.html
   My bibliography  Save this article

Sustainable New Brick and Thermo-Acoustic Insulation Panel from Mineralization of Stranded Driftwood Residues

Author

Listed:
  • Anna Laura Pisello

    (Department of Engineering, University of Perugia, Via G. Duranti 93, Perugia 06125, Italy
    CIRIAF—Interuniversity Research Center on Pollution and Environment “Mauro Felli”, University of Perugia, Via G. Duranti 67, Perugia 06125, Italy)

  • Claudia Fabiani

    (CIRIAF—Interuniversity Research Center on Pollution and Environment “Mauro Felli”, University of Perugia, Via G. Duranti 67, Perugia 06125, Italy)

  • Nastaran Makaremi

    (CIRIAF—Interuniversity Research Center on Pollution and Environment “Mauro Felli”, University of Perugia, Via G. Duranti 67, Perugia 06125, Italy)

  • Veronica Lucia Castaldo

    (CIRIAF—Interuniversity Research Center on Pollution and Environment “Mauro Felli”, University of Perugia, Via G. Duranti 67, Perugia 06125, Italy)

  • Gianluca Cavalaglio

    (Department of Engineering, University of Perugia, Via G. Duranti 93, Perugia 06125, Italy
    CIRIAF—Interuniversity Research Center on Pollution and Environment “Mauro Felli”, University of Perugia, Via G. Duranti 67, Perugia 06125, Italy)

  • Andrea Nicolini

    (Department of Engineering, University of Perugia, Via G. Duranti 93, Perugia 06125, Italy
    CIRIAF—Interuniversity Research Center on Pollution and Environment “Mauro Felli”, University of Perugia, Via G. Duranti 67, Perugia 06125, Italy)

  • Marco Barbanera

    (Department of Engineering, University of Perugia, Via G. Duranti 93, Perugia 06125, Italy
    CIRIAF—Interuniversity Research Center on Pollution and Environment “Mauro Felli”, University of Perugia, Via G. Duranti 67, Perugia 06125, Italy)

  • Franco Cotana

    (Department of Engineering, University of Perugia, Via G. Duranti 93, Perugia 06125, Italy
    CIRIAF—Interuniversity Research Center on Pollution and Environment “Mauro Felli”, University of Perugia, Via G. Duranti 67, Perugia 06125, Italy)

Abstract

There is considerable interest recently in by-products for application in green buildings. These materials are widely used as building envelope insulators or blocks. In this study, an experimental study was conducted to test stranded driftwood residues as raw material for possible thermo-acoustic insulation panel and environmentally sustainable brick. The thermal and acoustic characteristics of such a natural by-product were examined. Part of samples were mineralized by means of cement-based additive to reinforce the material and enhance its durability as well as fire resistance. Several mixtures with different sizes of ground wood chips and different quantities of cement were investigated. The thermo-acoustic in-lab characterization was aimed at investigating the thermal conductivity, thermal diffusivity, volumetric specific heat, and acoustic transmission loss. All samples were tested before and after mineralization. Results from this study indicate that it is possible to use stranded driftwood residues as building materials with competitive thermo-acoustic properties. In fact, the thermal conductivity was shown to be always around 0.07 W/mK in the unbound samples, and around double that value for the mineralized samples, which present a much higher volumetric specific heat (1.6 MJ/m 3 K) and transmission loss capability. The lignin powder showed a sort of intermediate behavior between the unbound and the mineralized samples.

Suggested Citation

  • Anna Laura Pisello & Claudia Fabiani & Nastaran Makaremi & Veronica Lucia Castaldo & Gianluca Cavalaglio & Andrea Nicolini & Marco Barbanera & Franco Cotana, 2016. "Sustainable New Brick and Thermo-Acoustic Insulation Panel from Mineralization of Stranded Driftwood Residues," Energies, MDPI, vol. 9(8), pages 1-20, August.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:8:p:619-:d:75342
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/8/619/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/8/619/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sgroi, Filippo & Di Trapani, Anna Maria & Foderà, Mario & Testa, Riccardo & Tudisca, Salvatore, 2015. "Economic assessment of Eucalyptus (spp.) for biomass production as alternative crop in Southern Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 614-619.
    2. Hong Sheng Huang & Chung Hwei Su & Cheng Bang Li & Ching Yuan Lin & Chun Chou Lin, 2016. "Enhancement of Fire Safety of an Existing Green Building due to Natural Ventilation," Energies, MDPI, vol. 9(3), pages 1-28, March.
    3. Paola Iodice & Nicola Massarotti & Alessandro Mauro, 2016. "Effects of Inhomogeneities on Heat and Mass Transport Phenomena in Thermal Bridges," Energies, MDPI, vol. 9(3), pages 1-21, February.
    4. Silvia Vilčeková & Monika Čuláková & Eva Krídlová Burdová & Jana Katunská, 2015. "Energy and Environmental Evaluation of Non-Transparent Constructions of Building Envelope for Wooden Houses," Energies, MDPI, vol. 8(10), pages 1-29, October.
    5. Franco Cotana & Gianluca Cavalaglio & Anna Laura Pisello & Mattia Gelosia & David Ingles & Enrico Pompili, 2015. "Sustainable Ethanol Production from Common Reed ( Phragmites australis ) through Simultaneuos Saccharification and Fermentation," Sustainability, MDPI, vol. 7(9), pages 1-15, September.
    6. Salata, F. & Coppi, M., 2014. "A first approach study on the desalination of sea water using heat transformers powered by solar ponds," Applied Energy, Elsevier, vol. 136(C), pages 611-618.
    7. Gutierrez, Andrea & Miró, Laia & Gil, Antoni & Rodríguez-Aseguinolaza, Javier & Barreneche, Camila & Calvet, Nicolas & Py, Xavier & Inés Fernández, A. & Grágeda, Mario & Ushak, Svetlana & Cabeza, Luis, 2016. "Advances in the valorization of waste and by-product materials as thermal energy storage (TES) materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 763-783.
    8. Verma, V.K. & Bram, S. & Delattin, F. & Laha, P. & Vandendael, I. & Hubin, A. & De Ruyck, J., 2012. "Agro-pellets for domestic heating boilers: Standard laboratory and real life performance," Applied Energy, Elsevier, vol. 90(1), pages 17-23.
    9. Hendricks, Aaron M. & Wagner, John E. & Volk, Timothy A. & Newman, David H. & Brown, Tristan R., 2016. "A cost-effective evaluation of biomass district heating in rural communities," Applied Energy, Elsevier, vol. 162(C), pages 561-569.
    10. Anna Laura Pisello, 2015. "Experimental Analysis of Cool Traditional Solar Shading Systems for Residential Buildings," Energies, MDPI, vol. 8(3), pages 1-14, March.
    11. Serrano, Susana & de Gracia, Alvaro & Cabeza, Luisa F., 2016. "Adaptation of rammed earth to modern construction systems: Comparative study of thermal behavior under summer conditions," Applied Energy, Elsevier, vol. 175(C), pages 180-188.
    12. Schiavoni, S. & D׳Alessandro, F. & Bianchi, F. & Asdrubali, F., 2016. "Insulation materials for the building sector: A review and comparative analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 988-1011.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Václav Kočí & Lenka Scheinherrová & Jiří Maděra & Martin Keppert & Zbigniew Suchorab & Grzegorz Łagód & Robert Černý, 2020. "Experimental and Computational Study of Thermal Processes in Red Clays Exposed to High Temperatures," Energies, MDPI, vol. 13(9), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El may, Yassine & Jeguirim, Mejdi & Dorge, Sophie & Trouvé, Gwenaelle & Said, Rachid, 2012. "Study on the thermal behavior of different date palm residues: Characterization and devolatilization kinetics under inert and oxidative atmospheres," Energy, Elsevier, vol. 44(1), pages 702-709.
    2. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Wendelin Wichtmann & Grzegorz Zając & Piotr Banaszuk, 2023. "Common Reed and Maize Silage Co-Digestion as a Pathway towards Sustainable Biogas Production," Energies, MDPI, vol. 16(2), pages 1-25, January.
    3. Jiang, Wei & Jin, Yang & Liu, Gongliang & Li, Qing & Li, Dong, 2023. "Passive nearly zero energy retrofits of rammed earth rural residential buildings based on energy efficiency and cost-effectiveness analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    4. Nadia Palmieri & Alessandro Suardi & Luigi Pari, 2020. "Italian Consumers’ Willingness to Pay for Eucalyptus Firewood," Sustainability, MDPI, vol. 12(7), pages 1-14, March.
    5. Manju Dhakad Tanwar & Felipe Andrade Torres & Ali Mubarak Alqahtani & Pankaj Kumar Tanwar & Yashas Bhand & Omid Doustdar, 2023. "Promising Bioalcohols for Low-Emission Vehicles," Energies, MDPI, vol. 16(2), pages 1-22, January.
    6. Kraiem, Nesrine & Jeguirim, Mejdi & Limousy, Lionel & Lajili, Marzouk & Dorge, Sophie & Michelin, Laure & Said, Rachid, 2014. "Impregnation of olive mill wastewater on dry biomasses: Impact on chemical properties and combustion performances," Energy, Elsevier, vol. 78(C), pages 479-489.
    7. Stefano Cascone & Gianpiero Evola & Antonio Gagliano & Gaetano Sciuto & Chiara Baroetto Parisi, 2019. "Laboratory and In-Situ Measurements for Thermal and Acoustic Performance of Straw Bales," Sustainability, MDPI, vol. 11(20), pages 1-19, October.
    8. Artur Koper & Karol Prałat & Justyna Ciemnicka & Katarzyna Buczkowska, 2020. "Influence of the Calcination Temperature of Synthetic Gypsum on the Particle Size Distribution and Setting Time of Modified Building Materials," Energies, MDPI, vol. 13(21), pages 1-23, November.
    9. Ariadna Carrobé & Lídia Rincón & Ingrid Martorell, 2021. "Thermal Monitoring and Simulation of Earthen Buildings. A Review," Energies, MDPI, vol. 14(8), pages 1-47, April.
    10. Sungur, Bilal & Basar, Cem & Kaleli, Alirıza, 2023. "Multi-objective optimisation of the emission parameters and efficiency of pellet stove at different supply airflow positions based on machine learning approach," Energy, Elsevier, vol. 278(PA).
    11. Azim Baibagyssov & Niels Thevs & Sabir Nurtazin & Rainer Waldhardt & Volker Beckmann & Ruslan Salmurzauly, 2020. "Biomass Resources of Phragmites australis in Kazakhstan: Historical Developments, Utilization, and Prospects," Resources, MDPI, vol. 9(6), pages 1-25, June.
    12. Hawks, M.A. & Cho, S., 2024. "Review and analysis of current solutions and trends for zero energy building (ZEB) thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    13. Adriana Estokova & Marcela Ondova & Martina Wolfova & Alena Paulikova & Stanislav Toth, 2019. "Examination of Bearing Walls Regarding Their Environmental Performance," Energies, MDPI, vol. 12(2), pages 1-27, January.
    14. Jéssica Bárbara da Silva & Edvaldo Pereira Santos Júnior & João Gabriel Távora Pedrosa & Aldo Torres Sales & Everardo Valadares de Sa Barretto Sampaio & Rômulo Simões Cezar Menezes & Emmanuel Damilano, 2022. "Energetic and Economic Analysis of Spineless Cactus Biomass Production in the Brazilian Semi-arid Region," Energies, MDPI, vol. 15(14), pages 1-16, July.
    15. Alejandro Padilla-Rivera & Ben Amor & Pierre Blanchet, 2018. "Evaluating the Link between Low Carbon Reductions Strategies and Its Performance in the Context of Climate Change: A Carbon Footprint of a Wood-Frame Residential Building in Quebec, Canada," Sustainability, MDPI, vol. 10(8), pages 1-20, August.
    16. Dávid Nagy & Péter Balogh & Zoltán Gabnai & József Popp & Judit Oláh & Attila Bai, 2018. "Economic Analysis of Pellet Production in Co-Digestion Biogas Plants," Energies, MDPI, vol. 11(5), pages 1-21, May.
    17. Jacek Wasilewski & Grzegorz Zając & Joanna Szyszlak-Bargłowicz & Andrzej Kuranc, 2022. "Evaluation of Greenhouse Gas Emission Levels during the Combustion of Selected Types of Agricultural Biomass," Energies, MDPI, vol. 15(19), pages 1-14, October.
    18. Andrea Porcu & Stefano Sollai & Davide Marotto & Mauro Mureddu & Francesca Ferrara & Alberto Pettinau, 2019. "Techno-Economic Analysis of a Small-Scale Biomass-to-Energy BFB Gasification-Based System," Energies, MDPI, vol. 12(3), pages 1-17, February.
    19. Aleksander Król & Małgorzata Król, 2018. "Transient Analyses and Energy Balance of Air Flow in Road Tunnels," Energies, MDPI, vol. 11(7), pages 1-15, July.
    20. Piccardo, C. & Dodoo, A. & Gustavsson, L. & Tettey, U.Y.A., 2020. "Retrofitting with different building materials: Life-cycle primary energy implications," Energy, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:8:p:619-:d:75342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.