IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i6p1409-d1357285.html
   My bibliography  Save this article

The Use of Hydrodynamic Cavitation to Improve the Anaerobic Digestion of Waste from Dairy Cattle Farming—From Laboratory Tests to Large-Scale Agricultural Biogas Plants

Author

Listed:
  • Marcin Dębowski

    (Department of Environment Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Str. Oczapowskiego 5, 10-719 Olsztyn, Poland)

  • Joanna Kazimierowicz

    (Department of Water Supply and Sewage Systems, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, 15-351 Bialystok, Poland)

  • Anna Nowicka

    (Department of Environment Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Str. Oczapowskiego 5, 10-719 Olsztyn, Poland)

  • Magda Dudek

    (Department of Environment Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Str. Oczapowskiego 5, 10-719 Olsztyn, Poland)

  • Marcin Zieliński

    (Department of Environment Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Str. Oczapowskiego 5, 10-719 Olsztyn, Poland)

Abstract

There is a need to find methods to intensify the anaerobic digestion process. One possibility is the use of pretreatment techniques. Many laboratory tests confirm their effectiveness, but in most cases, there is no verification work carried out on industrial plants. A reliable and complete evaluation of new solutions can only be carried out in plants that reflect operating conditions at a higher readiness technological level. This has a direct impact on the scientific value and, above all, on the high application value of innovative technologies. The aim of our research carried out under laboratory conditions and on a large scale was to determine the technological and energy efficiency of the use of hydrodynamic cavitation in the pretreatment of a waste mixture from dairy farms. It has been shown that hydrodynamic cavitation significantly increases the concentration of organic compounds in the dissolved phase. In the most effective variants, the increase in the content of these indicators was over 90% for both COD and TOC. The degree of solubilisation achieved was 49 ± 2.6% for COD and almost 52 ± 4.4% for TOC. Under laboratory conditions, the highest effects of anaerobic digestion were achieved after 10 min of pretreatment. The amount of biogas was, on average, 367 ± 18 mL/gCOD, and the amount of methane was 233 ± 13 mL/gCOD. Further large-scale optimisation trials showed that after 8 min of hydrodynamic cavitation, the biogas yield was 327 ± 8 L/kgCOD with a CH 4 content of 62.9 ± 1.9%. With this variant, the net energy yield was 66.4 ± 2.6 kWh/day, a value that was 13.9% higher than the original variant with 10 min of disintegration and 3.1% higher than the variant without pretreatment.

Suggested Citation

  • Marcin Dębowski & Joanna Kazimierowicz & Anna Nowicka & Magda Dudek & Marcin Zieliński, 2024. "The Use of Hydrodynamic Cavitation to Improve the Anaerobic Digestion of Waste from Dairy Cattle Farming—From Laboratory Tests to Large-Scale Agricultural Biogas Plants," Energies, MDPI, vol. 17(6), pages 1-26, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1409-:d:1357285
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/6/1409/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/6/1409/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Walczak, Justyna & Karolinczak, Beata & Zubrowska-Sudol, Monika, 2023. "Effect of co-digestion and hydrodynamic disintegration on the methane potential of sewage sludge and organic fraction of municipal solid waste with consideration of the carbon footprint," Energy, Elsevier, vol. 282(C).
    2. Sarrion, A. & Ipiales, R.P. & de la Rubia, M.A. & Mohedano, A.F. & Diaz, E., 2023. "Chicken meat and bone meal valorization by hydrothermal treatment and anaerobic digestion: Biofuel production and nutrient recovery," Renewable Energy, Elsevier, vol. 204(C), pages 652-660.
    3. Joanna Kazimierowicz & Marcin Dębowski & Marcin Zieliński, 2023. "Technological, Ecological, and Energy-Economic Aspects of Using Solidified Carbon Dioxide for Aerobic Granular Sludge Pre-Treatment Prior to Anaerobic Digestion," IJERPH, MDPI, vol. 20(5), pages 1-21, February.
    4. Kim, Seunghwan & Lee, Changmin & Young Kim, Jae, 2023. "Effects of alkaline thermal hydrolysis on the formation of refractory compounds and energy balance of anaerobic digestion of cattle manure," Applied Energy, Elsevier, vol. 342(C).
    5. Eggemann, Lea & Rau, Florian & Stolten, Detlef, 2023. "The ecological potential of manure utilisation in small-scale biogas plants," Applied Energy, Elsevier, vol. 331(C).
    6. Joanna Kazimierowicz & Marcin Zieliński & Izabela Bartkowska & Marcin Dębowski, 2022. "Effect of Acid Whey Pretreatment Using Ultrasonic Disintegration on the Removal of Organic Compounds and Anaerobic Digestion Efficiency," IJERPH, MDPI, vol. 19(18), pages 1-20, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li Jiang & Yanru Zhang & Yi Zhu & Zhongliang Huang & Jing Huang & Zijian Wu & Xuan Zhang & Xiaoli Qin & Hui Li, 2023. "Effects of Magnetic Biochar Addition on Mesophilic Anaerobic Digestion of Sewage Sludge," IJERPH, MDPI, vol. 20(5), pages 1-14, February.
    2. Marcin Dębowski & Marcin Zieliński & Joanna Kazimierowicz & Anna Nowicka & Magda Dudek, 2024. "Optimisation of Biogas Production in the Co-Digestion of Pre-Hydrodynamically Cavitated Aerobic Granular Sludge with Waste Fats," Energies, MDPI, vol. 17(4), pages 1-16, February.
    3. Jakub Mazurkiewicz, 2023. "The Impact of Manure Use for Energy Purposes on the Economic Balance of a Dairy Farm," Energies, MDPI, vol. 16(18), pages 1-22, September.
    4. Joanna Kazimierowicz & Marcin Dębowski & Marcin Zieliński, 2022. "Effect of Pharmaceutical Sludge Pre-Treatment with Fenton/Fenton-like Reagents on Toxicity and Anaerobic Digestion Efficiency," IJERPH, MDPI, vol. 20(1), pages 1-22, December.
    5. Haniyeh Jalalipour & Satyanarayana Narra & Vicky Shettigondahalli Ekanthalu & Edward Antwi & Alok Ranjan & Supreet Kaur & Bharat Bhushan Nagar & Sebastian Markart & Thilanka Seneviratne & Vidhi Singh , 2024. "Review of Municipal Organic Waste Management in Uttar Pradesh State, India," Sustainability, MDPI, vol. 16(12), pages 1-13, June.
    6. Mumtaz, Hamza & Sobek, Szymon & Sajdak, Marcin & Muzyka, Roksana & Werle, Sebastian, 2023. "An experimental investigation and process optimization of the oxidative liquefaction process as the recycling method of the end-of-life wind turbine blades," Renewable Energy, Elsevier, vol. 211(C), pages 269-278.
    7. Marcin Zieliński & Marcin Dębowski & Joanna Kazimierowicz & Anna Nowicka & Magda Dudek, 2024. "Application of Hydrodynamic Cavitation in the Disintegration of Aerobic Granular Sludge—Evaluation of Pretreatment Time on Biomass Properties, Anaerobic Digestion Efficiency and Energy Balance," Energies, MDPI, vol. 17(2), pages 1-17, January.
    8. Wądrzyk, Mariusz & Korzeniowski, Łukasz & Plata, Marek & Janus, Rafał & Lewandowski, Marek & Michalik, Marek & Magdziarz, Aneta, 2023. "Pyrolysis of hydrochars obtained from blackcurrant pomace in single and binary solvent systems," Renewable Energy, Elsevier, vol. 214(C), pages 383-394.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1409-:d:1357285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.