IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2022i1p271-d1013654.html
   My bibliography  Save this article

Effect of Pharmaceutical Sludge Pre-Treatment with Fenton/Fenton-like Reagents on Toxicity and Anaerobic Digestion Efficiency

Author

Listed:
  • Joanna Kazimierowicz

    (Department of Water Supply and Sewage Systems, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, 15-351 Bialystok, Poland)

  • Marcin Dębowski

    (Department of Environmental Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland)

  • Marcin Zieliński

    (Department of Environmental Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland)

Abstract

Sewage sludge is successfully used in anaerobic digestion (AD). Although AD is a well-known, universal and widely recognized technology, there are factors that limit its widespread use, such as the presence of substances that are resistant to biodegradation, inhibit the fermentation process or are toxic to anaerobic microorganisms. Sewage sludge generated by the pharmaceutical sector is one such substance. Pharmaceutical sewage sludge (PSS) is characterized by high concentrations of biocides, including antibiotics and other compounds that have a negative effect on the anaerobic environment. The aim of the present research was to determine the feasibility of applying Advanced Oxidation Processes (AOP) harnessing Fenton’s (Fe 2+ /H 2 O 2 ) and Fenton-like (Fe 3+ /H 2 O 2 ) reaction to PSS pre-treatment prior to AD. The method was analyzed in terms of its impact on limiting PSS toxicity and improving methane fermentation. The use of AOP led to a significant reduction of PSS toxicity from 53.3 ± 5.1% to 35.7 ± 3.2%, which had a direct impact on the taxonomic structure of anaerobic bacteria, and thus influenced biogas production efficiency and methane content. Correlations were found between PSS toxicity and the presence of Archaea and biogas yields in the Fe 2+ /H 2 O 2 group. CH 4 production ranged from 363.2 ± 11.9 cm 3 CH 4 /g VS in the control PSS to approximately 450 cm 3 /g VS. This was 445.7 ± 21.6 cm 3 CH 4 /g VS (1.5 g Fe 2+ /dm 3 and 6.0 g H 2 O 2 /dm 3 ) and 453.6 ± 22.4 cm 3 CH 4 /g VS (2.0 g Fe 2+ /dm 3 and 8.0 g H 2 O 2 /dm 3 ). The differences between these variants were not statistically significant. Therefore, due to the economical use of chemical reagents, the optimal tested dose was 1.5 g Fe 2+ /6.0 g H 2 O 2 . The use of a Fenton-like reagent (Fe 3+ /H 2 O 2 ) resulted in lower AD efficiency (max. 393.7 ± 12.1 cm 3 CH 4 /g VS), and no strong linear relationships between the analyzed variables were found. It is, therefore, a more difficult method to estimate the final effects. Research has proven that AOP can be used to improve the efficiency of AD of PSS.

Suggested Citation

  • Joanna Kazimierowicz & Marcin Dębowski & Marcin Zieliński, 2022. "Effect of Pharmaceutical Sludge Pre-Treatment with Fenton/Fenton-like Reagents on Toxicity and Anaerobic Digestion Efficiency," IJERPH, MDPI, vol. 20(1), pages 1-22, December.
  • Handle: RePEc:gam:jijerp:v:20:y:2022:i:1:p:271-:d:1013654
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/1/271/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/1/271/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zamri, M.F.M.A. & Hasmady, Saiful & Akhiar, Afifi & Ideris, Fazril & Shamsuddin, A.H. & Mofijur, M. & Fattah, I. M. Rizwanul & Mahlia, T.M.I., 2021. "A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Marcin Zieliński & Marcin Dębowski & Joanna Kazimierowicz, 2021. "The Effect of Static Magnetic Field on Methanogenesis in the Anaerobic Digestion of Municipal Sewage Sludge," Energies, MDPI, vol. 14(3), pages 1-16, January.
    3. Gabriele Di Giacomo & Pietro Romano, 2022. "Evolution and Prospects in Managing Sewage Sludge Resulting from Municipal Wastewater Purification," Energies, MDPI, vol. 15(15), pages 1-33, August.
    4. Omar Israel González Peña & Miguel Ángel López Zavala & Héctor Cabral Ruelas, 2021. "Pharmaceuticals Market, Consumption Trends and Disease Incidence Are Not Driving the Pharmaceutical Research on Water and Wastewater," IJERPH, MDPI, vol. 18(5), pages 1-37, March.
    5. Yao, Yao & Huang, Gordon & An, Chunjiang & Chen, Xiujuan & Zhang, Peng & Xin, Xiaying & Jian Shen, & Agnew, Joy, 2020. "Anaerobic digestion of livestock manure in cold regions: Technological advancements and global impacts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    6. Joanna Kazimierowicz & Marcin Zieliński & Izabela Bartkowska & Marcin Dębowski, 2022. "Effect of Acid Whey Pretreatment Using Ultrasonic Disintegration on the Removal of Organic Compounds and Anaerobic Digestion Efficiency," IJERPH, MDPI, vol. 19(18), pages 1-20, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joanna Kazimierowicz & Marcin Dębowski & Marcin Zieliński, 2023. "Technological, Ecological, and Energy-Economic Aspects of Using Solidified Carbon Dioxide for Aerobic Granular Sludge Pre-Treatment Prior to Anaerobic Digestion," IJERPH, MDPI, vol. 20(5), pages 1-21, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Xinhui & Yan, Lei & Wang, Haipeng & Bi, Shaojie & Zhang, Futao & Huang, Sisi & Wang, Yanhong & Wang, Yanjie, 2024. "Anaerobic co-digestion of cabbage waste and cattle manure: Effect of mixing ratio and hydraulic retention time," Renewable Energy, Elsevier, vol. 221(C).
    2. Marcin Dębowski & Joanna Kazimierowicz & Anna Nowicka & Magda Dudek & Marcin Zieliński, 2024. "The Use of Hydrodynamic Cavitation to Improve the Anaerobic Digestion of Waste from Dairy Cattle Farming—From Laboratory Tests to Large-Scale Agricultural Biogas Plants," Energies, MDPI, vol. 17(6), pages 1-26, March.
    3. Carolinne Secco & Maria Eduarda Kounaris Fuziki & Angelo Marcelo Tusset & Giane Gonçalves Lenzi, 2023. "Reactive Processes for H 2 S Removal," Energies, MDPI, vol. 16(4), pages 1-14, February.
    4. Pietro Romano & Nicola Stampone & Gabriele Di Giacomo, 2023. "Evolution and Prospects of Hydrothermal Carbonization," Energies, MDPI, vol. 16(7), pages 1-11, March.
    5. Ferraz de Campos, Victor Arruda & Silva, Valter Bruno & Cardoso, João Sousa & Brito, Paulo S. & Tuna, Celso Eduardo & Silveira, José Luz, 2021. "A review of waste management in Brazil and Portugal: Waste-to-energy as pathway for sustainable development," Renewable Energy, Elsevier, vol. 178(C), pages 802-820.
    6. Jaime Jaimes-Estévez & German Zafra & Jaime Martí-Herrero & Guillermo Pelaz & Antonio Morán & Alejandra Puentes & Christian Gomez & Liliana del Pilar Castro & Humberto Escalante Hernández, 2020. "Psychrophilic Full Scale Tubular Digester Operating over Eight Years: Complete Performance Evaluation and Microbiological Population," Energies, MDPI, vol. 14(1), pages 1-17, December.
    7. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2024. "A solar-assisted liquefied biomethane production by anaerobic digestion: Dynamic simulations for harbors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    8. Stephen Tangwe & Patrick Mukumba & Golden Makaka, 2022. "Comparison of the Prediction Accuracy of Total Viable Bacteria Counts in a Batch Balloon Digester Charged with Cow Manure: Multiple Linear Regression and Non-Linear Regression Models," Energies, MDPI, vol. 15(19), pages 1-23, October.
    9. El Ibrahimi, Mohammed & Khay, Ismail & El Maakoul, Anas & Bakhouya, Mohamed, 2022. "Effects of the temperature range on the energy performance of mixed and unmixed digesters with submerged waste: An experimental and CFD simulation study," Renewable Energy, Elsevier, vol. 200(C), pages 1092-1104.
    10. Li Jiang & Yanru Zhang & Yi Zhu & Zhongliang Huang & Jing Huang & Zijian Wu & Xuan Zhang & Xiaoli Qin & Hui Li, 2023. "Effects of Magnetic Biochar Addition on Mesophilic Anaerobic Digestion of Sewage Sludge," IJERPH, MDPI, vol. 20(5), pages 1-14, February.
    11. Wonbae Lee & Youngo Kim & Ho Kim & Moonil Kim, 2024. "Comparison of Anaerobic Co-Digestion of Food Waste and Livestock Manure at Various Mixing Ratios under Mesophilic and Thermophilic Temperatures," Sustainability, MDPI, vol. 16(17), pages 1-17, September.
    12. Paulina-Soledad Vidal-Espinosa & Manuel Alvarez-Vera & Andrés Cárdenas & Juan-Carlos Cobos-Torres, 2023. "Beneficial Microorganisms in the Anaerobic Digestion of Cattle and Swine Excreta," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
    13. Tavera-Ruiz, C. & Martí-Herrero, J. & Mendieta, O. & Jaimes-Estévez, J. & Gauthier-Maradei, P. & Azimov, U. & Escalante, H. & Castro, L., 2023. "Current understanding and perspectives on anaerobic digestion in developing countries: Colombia case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    14. Hajizadeh, Abdollah & Mohamadi-Baghmolaei, Mohamad & Cata Saady, Noori M. & Zendehboudi, Sohrab, 2022. "Hydrogen production from biomass through integration of anaerobic digestion and biogas dry reforming," Applied Energy, Elsevier, vol. 309(C).
    15. Siwal, Samarjeet Singh & Zhang, Qibo & Devi, Nishu & Saini, Adesh Kumar & Saini, Vipin & Pareek, Bhawna & Gaidukovs, Sergejs & Thakur, Vijay Kumar, 2021. "Recovery processes of sustainable energy using different biomass and wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    16. Marcin Dębowski & Marta Kisielewska & Joanna Kazimierowicz & Marcin Zieliński, 2023. "Methane Production from Confectionery Wastewater Treated in the Anaerobic Labyrinth-Flow Bioreactor," Energies, MDPI, vol. 16(1), pages 1-18, January.
    17. Bhatnagar, N. & Ryan, D. & Murphy, R. & Enright, A.M., 2022. "A comprehensive review of green policy, anaerobic digestion of animal manure and chicken litter feedstock potential – Global and Irish perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    18. James Darmey & Julius Cudjoe Ahiekpor & Satyanarayana Narra & Osei-Wusu Achaw & Herbert Fiifi Ansah, 2023. "Municipal Solid Waste Generation Trend and Bioenergy Recovery Potential: A Review," Energies, MDPI, vol. 16(23), pages 1-21, November.
    19. Peng, Wei & Beggio, Giovanni & Pivato, Alberto & Zhang, Hua & Lü, Fan & He, Pinjing, 2022. "Applications of near infrared spectroscopy and hyperspectral imaging techniques in anaerobic digestion of bio-wastes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    20. Hollas, C.E. & Bolsan, A.C. & Chini, A. & Venturin, B. & Bonassa, G. & Cândido, D. & Antes, F.G. & Steinmetz, R.L.R. & Prado, N.V. & Kunz, A., 2021. "Effects of swine manure storage time on solid-liquid separation and biogas production: A life-cycle assessment approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2022:i:1:p:271-:d:1013654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.