IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i4p787-d1334621.html
   My bibliography  Save this article

Latent Thermal Energy Storage System for Heat Recovery between 120 and 150 °C: Material Stability and Corrosion

Author

Listed:
  • Yasmine Lalau

    (Universite de Pau et des Pays de l’Adour, E2S UPPA, LaTEP, 64000 Pau, France
    Université de Toulouse, IMT Mines Albi, CNRS UMR 5302, Centre RAPSODEE, Campus Jarlard, CEDEX 09, 81013 Albi, France)

  • Sacha Rigal

    (Universite de Pau et des Pays de l’Adour, E2S UPPA, LaTEP, 64000 Pau, France)

  • Jean-Pierre Bédécarrats

    (Universite de Pau et des Pays de l’Adour, E2S UPPA, LaTEP, 64000 Pau, France)

  • Didier Haillot

    (Département de Génie Mécanique, École de Technologie Supérieure, 1100, Rue Notre-Dame Ouest, Montréal, QC H3C1K3, Canada)

Abstract

Thermal energy represents more than half of the energy needs of European industry, but is still misspent in processes as waste heat, mostly between 100 and 200 °C. Waste heat recovery and reuse provide carbon-free heat and reduce production costs. The industrial sector is seeking affordable and rugged solutions that should adapt the heat recovery to heat demand. This study aims to identify suitable latent heat materials to reach that objective: the selected candidates should show good thermal performance that remains stable after aging and, in addition, be at a reasonable price. This paper details the selection process and aging results for two promising phase change materials (PCMs): adipic and sebacic acid. They showed, respectively, melting temperatures around 150 °C and 130 °C, degradation temperatures (mass lost higher than 1%) above 180 °C, and volumetric enthalpy of 95 and 75 kWh·m −3 . They are both compatible with the stainless steel 316L while their operating temperature does not exceed 15 °C above the melting temperature, but they do not comply with the industrial recommendation for long-term use in contact with the steel P265GH (corrosion speed > 0.2 mm·year −1 ).

Suggested Citation

  • Yasmine Lalau & Sacha Rigal & Jean-Pierre Bédécarrats & Didier Haillot, 2024. "Latent Thermal Energy Storage System for Heat Recovery between 120 and 150 °C: Material Stability and Corrosion," Energies, MDPI, vol. 17(4), pages 1-17, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:787-:d:1334621
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/4/787/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/4/787/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniarta, Sindu & Nemś, Magdalena & Kolasiński, Piotr, 2023. "A review on thermal energy storage applicable for low- and medium-temperature organic Rankine cycle," Energy, Elsevier, vol. 278(PA).
    2. Pereira da Cunha, Jose & Eames, Philip, 2016. "Thermal energy storage for low and medium temperature applications using phase change materials – A review," Applied Energy, Elsevier, vol. 177(C), pages 227-238.
    3. Gunasekara, Saman Nimali & Pan, Ruijun & Chiu, Justin Ningwei & Martin, Viktoria, 2016. "Polyols as phase change materials for surplus thermal energy storage," Applied Energy, Elsevier, vol. 162(C), pages 1439-1452.
    4. Moreno, Pere & Miró, Laia & Solé, Aran & Barreneche, Camila & Solé, Cristian & Martorell, Ingrid & Cabeza, Luisa F., 2014. "Corrosion of metal and metal alloy containers in contact with phase change materials (PCM) for potential heating and cooling applications," Applied Energy, Elsevier, vol. 125(C), pages 238-245.
    5. Jankowski, Nicholas R. & McCluskey, F. Patrick, 2014. "A review of phase change materials for vehicle component thermal buffering," Applied Energy, Elsevier, vol. 113(C), pages 1525-1561.
    6. Oró, Eduard & Miró, Laia & Barreneche, Camila & Martorell, Ingrid & Farid, Mohammed M. & Cabeza, Luisa F., 2013. "Corrosion of metal and polymer containers for use in PCM cold storage," Applied Energy, Elsevier, vol. 109(C), pages 449-453.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kahwaji, Samer & Johnson, Michel B. & Kheirabadi, Ali C. & Groulx, Dominic & White, Mary Anne, 2018. "A comprehensive study of properties of paraffin phase change materials for solar thermal energy storage and thermal management applications," Energy, Elsevier, vol. 162(C), pages 1169-1182.
    2. Zhang, Suling & Wu, Wei & Wang, Shuangfeng, 2018. "Experimental investigations of Alum/expanded graphite composite phase change material for thermal energy storage and its compatibility with metals," Energy, Elsevier, vol. 161(C), pages 508-516.
    3. Khan, Mohammed Mumtaz A. & Saidur, R. & Al-Sulaiman, Fahad A., 2017. "A review for phase change materials (PCMs) in solar absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 105-137.
    4. Englmair, Gerald & Moser, Christoph & Furbo, Simon & Dannemand, Mark & Fan, Jianhua, 2018. "Design and functionality of a segmented heat-storage prototype utilizing stable supercooling of sodium acetate trihydrate in a solar heating system," Applied Energy, Elsevier, vol. 221(C), pages 522-534.
    5. Ur Rehman, Ata & Zhao, Tianyu & Shah, Muhammad Zahir & Khan, Yaqoob & Hayat, Asif & Dang, Changwei & Zheng, Maosheng & Yun, Sining, 2023. "Nanoengineering of MgSO4 nanohybrid on MXene substrate for efficient thermochemical heat storage material," Applied Energy, Elsevier, vol. 332(C).
    6. Nomura, Takahiro & Zhu, Chunyu & Nan, Sheng & Tabuchi, Kazuki & Wang, Shuangfeng & Akiyama, Tomohiro, 2016. "High thermal conductivity phase change composite with a metal-stabilized carbon-fiber network," Applied Energy, Elsevier, vol. 179(C), pages 1-6.
    7. Huang, Xinyu & Du, Zhao & Li, Yuanji & Li, Ze & Yang, Xiaohu & Li, Ming-Jia, 2024. "Optimal design on fin-metal foam hybrid structure for melting and solidification phase change storage: An experimental and numerical study," Energy, Elsevier, vol. 302(C).
    8. Yang, Kun & Zhu, Neng & Chang, Chen & Wang, Daquan & Yang, Shan & Ma, Shengming, 2018. "A methodological concept for phase change material selection based on multi-criteria decision making (MCDM): A case study," Energy, Elsevier, vol. 165(PB), pages 1085-1096.
    9. Tian, Yuanyuan & Liu, Anbang & Wang, Junli & Zhou, Yajie & Bao, Chengpeng & Xie, Huaqing & Wu, Zihua & Wang, Yuanyuan, 2021. "Optimized output electricity of thermoelectric generators by matching phase change material and thermoelectric material for intermittent heat sources," Energy, Elsevier, vol. 233(C).
    10. Han, Lipeng & Xie, Shaolei & Liu, Shang & Sun, Jinhe & Jia, Yongzhong & Jing, Yan, 2017. "Effects of sodium chloride on the thermal behavior of oxalic acid dihydrate for thermal energy storage," Applied Energy, Elsevier, vol. 185(P1), pages 762-767.
    11. Rathgeber, Christoph & Schmit, Henri & Hennemann, Peter & Hiebler, Stefan, 2014. "Investigation of pinacone hexahydrate as phase change material for thermal energy storage around 45°C," Applied Energy, Elsevier, vol. 136(C), pages 7-13.
    12. Xu, Tianhao & Gunasekara, Saman Nimali & Chiu, Justin Ningwei & Palm, Björn & Sawalha, Samer, 2020. "Thermal behavior of a sodium acetate trihydrate-based PCM: T-history and full-scale tests," Applied Energy, Elsevier, vol. 261(C).
    13. Mohamed, Shamseldin A. & Al-Sulaiman, Fahad A. & Ibrahim, Nasiru I. & Zahir, Md. Hasan & Al-Ahmed, Amir & Saidur, R. & Yılbaş, B.S. & Sahin, A.Z., 2017. "A review on current status and challenges of inorganic phase change materials for thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1072-1089.
    14. Meng, Jing-Hui & Gao, De-Yang & Liu, Yan & Zhang, Kai & Lu, Gui, 2022. "Heat transfer mechanism and structure design of phase change materials to improve thermoelectric device performance," Energy, Elsevier, vol. 245(C).
    15. Jiang, Jinyang & Zheng, Qi & Yan, Yiru & Guo, Dong & Wang, Fengjuan & Wu, Shengping & Sun, Wei, 2018. "Design of a novel nanocomposite with C-S-H@LA for thermal energy storage: A theoretical and experimental study," Applied Energy, Elsevier, vol. 220(C), pages 395-407.
    16. Vasu, Anusuiah & Hagos, Ftwi Y. & Noor, M.M. & Mamat, R. & Azmi, W.H. & Abdullah, Abdul A. & Ibrahim, Thamir K., 2017. "Corrosion effect of phase change materials in solar thermal energy storage application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 19-33.
    17. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    18. Simonsen, Galina & Ravotti, Rebecca & O'Neill, Poppy & Stamatiou, Anastasia, 2023. "Biobased phase change materials in energy storage and thermal management technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    19. Ahmadi Atouei, Saeed & Ranjbar, Ali Akbar & Rezania, Alireza, 2017. "Experimental investigation of two-stage thermoelectric generator system integrated with phase change materials," Applied Energy, Elsevier, vol. 208(C), pages 332-343.
    20. Grosu, Yaroslav & Zhao, Yanqi & Giacomello, Alberto & Meloni, Simone & Dauvergne, Jean-Luc & Nikulin, Artem & Palomo, Elena & Ding, Yulong & Faik, Abdessamad, 2020. "Hierarchical macro-nanoporous metals for leakage-free high-thermal conductivity shape-stabilized phase change materials," Applied Energy, Elsevier, vol. 269(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:787-:d:1334621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.