IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v190y2017icp997-1007.html
   My bibliography  Save this article

Building energy model calibration with schedules derived from electricity use data

Author

Listed:
  • Kim, Yang-Seon
  • Heidarinejad, Mohammad
  • Dahlhausen, Matthew
  • Srebric, Jelena

Abstract

Building energy models can accurately predict energy performance of buildings, if properly calibrated. This study developed and demonstrated a novel method to calibrate building energy models based on the occupancy and plug-load schedules derived from metered electric use data. Importantly, this study also proposed an occupancy assessment method applicable to resource limited situation when a building sub-metering system is not available. Furthermore, the developed method can facilitate accurate predictions of building energy performance without a requirement to simultaneously monitor energy use and occupancy rates. The method development process used data from an office type building (OB1), and further verified the method accuracy with data from two campus buildings (CB1 and CB2). The developed method is novel because it considers interactions of the validated modeled occupancy patterns, processed electricity use patterns, and the calibrated building energy model results at the hourly level. This approach allows addressing limitations in the current studies that are not fully capable of modeling occupancy patterns, electricity use patterns, and calibrated building energy models with this level of granularity. The accuracy of the building energy modeling results increases with the derived occupancy schedules and plug-loads. Specifically, the Coefficient of Variation Root Mean Square Error (CVRMSE) of OB1 building energy modeling results improved from 21% to 12% compared to the modeling results obtained with default schedules. The results from case study buildings CB1 and CB2 show that the accuracy of modeling results increased as the hourly electricity CVRMSE decreased from 128% to 31% and from 156% to 16%, respectively. These improvements are significant, while the developed method is applicable to other office or campus buildings from the category of medium-size commercial buildings. Finally, the identification of actual occupancy rates provides opportunities for inexpensive implementation of occupant-based controllers in buildings.

Suggested Citation

  • Kim, Yang-Seon & Heidarinejad, Mohammad & Dahlhausen, Matthew & Srebric, Jelena, 2017. "Building energy model calibration with schedules derived from electricity use data," Applied Energy, Elsevier, vol. 190(C), pages 997-1007.
  • Handle: RePEc:eee:appene:v:190:y:2017:i:c:p:997-1007
    DOI: 10.1016/j.apenergy.2016.12.167
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916319481
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.12.167?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaplowitz, Michael D. & Thorp, Laurie & Coleman, Kayla & Kwame Yeboah, Felix, 2012. "Energy conservation attitudes, knowledge, and behaviors in science laboratories," Energy Policy, Elsevier, vol. 50(C), pages 581-591.
    2. Li, Nan & Yang, Zheng & Becerik-Gerber, Burcin & Tang, Chao & Chen, Nanlin, 2015. "Why is the reliability of building simulation limited as a tool for evaluating energy conservation measures?," Applied Energy, Elsevier, vol. 159(C), pages 196-205.
    3. Goyal, Siddharth & Barooah, Prabir & Middelkoop, Timothy, 2015. "Experimental study of occupancy-based control of HVAC zones," Applied Energy, Elsevier, vol. 140(C), pages 75-84.
    4. Karan, Ebrahim & Mohammadpour, Atefeh & Asadi, Somayeh, 2016. "Integrating building and transportation energy use to design a comprehensive greenhouse gas mitigation strategy," Applied Energy, Elsevier, vol. 165(C), pages 234-243.
    5. Chen, Xiao & Wang, Qian & Srebric, Jelena, 2016. "Occupant feedback based model predictive control for thermal comfort and energy optimization: A chamber experimental evaluation," Applied Energy, Elsevier, vol. 164(C), pages 341-351.
    6. Wang, Qinpeng & Augenbroe, Godfried & Kim, Ji-Hyun & Gu, Li, 2016. "Meta-modeling of occupancy variables and analysis of their impact on energy outcomes of office buildings," Applied Energy, Elsevier, vol. 174(C), pages 166-180.
    7. Yang, Zheng & Becerik-Gerber, Burcin, 2015. "A model calibration framework for simultaneous multi-level building energy simulation," Applied Energy, Elsevier, vol. 149(C), pages 415-431.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pedro Paulo Fernandes da Silva & Alberto Hernandez Neto & Ildo Luis Sauer, 2021. "Evaluation of Model Calibration Method for Simulation Performance of a Public Hospital in Brazil," Energies, MDPI, vol. 14(13), pages 1-20, June.
    2. Fan, Cheng & Xiao, Fu & Yan, Chengchu & Liu, Chengliang & Li, Zhengdao & Wang, Jiayuan, 2019. "A novel methodology to explain and evaluate data-driven building energy performance models based on interpretable machine learning," Applied Energy, Elsevier, vol. 235(C), pages 1551-1560.
    3. Pallonetto, Fabiano & De Rosa, Mattia & D’Ettorre, Francesco & Finn, Donal P., 2020. "On the assessment and control optimisation of demand response programs in residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    4. Burillo, Daniel & Chester, Mikhail V. & Pincetl, Stephanie & Fournier, Eric D. & Reyna, Janet, 2019. "Forecasting peak electricity demand for Los Angeles considering higher air temperatures due to climate change," Applied Energy, Elsevier, vol. 236(C), pages 1-9.
    5. Soltanaghaei, Elahe & Whitehouse, Kamin, 2018. "Practical occupancy detection for programmable and smart thermostats," Applied Energy, Elsevier, vol. 220(C), pages 842-855.
    6. Luca Gugliermetti & Fabrizio Cumo & Sofia Agostinelli, 2024. "A Future Direction of Machine Learning for Building Energy Management: Interpretable Models," Energies, MDPI, vol. 17(3), pages 1-27, February.
    7. Wang, Wei & Hong, Tianzhen & Li, Nan & Wang, Ryan Qi & Chen, Jiayu, 2019. "Linking energy-cyber-physical systems with occupancy prediction and interpretation through WiFi probe-based ensemble classification," Applied Energy, Elsevier, vol. 236(C), pages 55-69.
    8. Romaní, Joaquim & Cabeza, Luisa F. & Pérez, Gabriel & Pisello, Anna Laura & de Gracia, Alvaro, 2018. "Experimental testing of cooling internal loads with a radiant wall," Renewable Energy, Elsevier, vol. 116(PA), pages 1-8.
    9. Cheng Zhen & Jide Niu & Zhe Tian, 2023. "Research on Model Calibration Method of Chiller Plants Based on Error Reverse Correction with Limited Data," Energies, MDPI, vol. 16(2), pages 1-17, January.
    10. Ardeshir Mahdavi & Christiane Berger & Hadeer Amin & Eleni Ampatzi & Rune Korsholm Andersen & Elie Azar & Verena M. Barthelmes & Matteo Favero & Jakob Hahn & Dolaana Khovalyg & Henrik N. Knudsen & Ale, 2021. "The Role of Occupants in Buildings’ Energy Performance Gap: Myth or Reality?," Sustainability, MDPI, vol. 13(6), pages 1-44, March.
    11. Jeong, Cheoljoon & Byon, Eunshin, 2024. "Calibration of building energy computer models via bias-corrected iteratively reweighted least squares method," Applied Energy, Elsevier, vol. 360(C).
    12. Abbasabadi, Narjes & Ashayeri, Mehdi & Azari, Rahman & Stephens, Brent & Heidarinejad, Mohammad, 2019. "An integrated data-driven framework for urban energy use modeling (UEUM)," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    13. Zhaoxia Wang & Yan Ding & Huiyan Deng & Fan Yang & Neng Zhu, 2018. "An Occupant-Oriented Calculation Method of Building Interior Cooling Load Design," Sustainability, MDPI, vol. 10(6), pages 1-29, May.
    14. Tian, Shen & Gao, Yuping & Shao, Shuangquan & Xu, Hongbo & Tian, Changqing, 2018. "Measuring the transient airflow rates of the infiltration through the doorway of the cold store by using a local air velocity linear fitting method," Applied Energy, Elsevier, vol. 227(C), pages 480-487.
    15. Chong, Adrian & Augenbroe, Godfried & Yan, Da, 2021. "Occupancy data at different spatial resolutions: Building energy performance and model calibration," Applied Energy, Elsevier, vol. 286(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nutkiewicz, Alex & Yang, Zheng & Jain, Rishee K., 2018. "Data-driven Urban Energy Simulation (DUE-S): A framework for integrating engineering simulation and machine learning methods in a multi-scale urban energy modeling workflow," Applied Energy, Elsevier, vol. 225(C), pages 1176-1189.
    2. Gianluca Serale & Massimo Fiorentini & Alfonso Capozzoli & Daniele Bernardini & Alberto Bemporad, 2018. "Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities," Energies, MDPI, vol. 11(3), pages 1-35, March.
    3. Glasgo, Brock & Hendrickson, Chris & Azevedo, Inês Lima, 2017. "Assessing the value of information in residential building simulation: Comparing simulated and actual building loads at the circuit level," Applied Energy, Elsevier, vol. 203(C), pages 348-363.
    4. Pedro Paulo Fernandes da Silva & Alberto Hernandez Neto & Ildo Luis Sauer, 2021. "Evaluation of Model Calibration Method for Simulation Performance of a Public Hospital in Brazil," Energies, MDPI, vol. 14(13), pages 1-20, June.
    5. Germán Ramos Ruiz & Carlos Fernández Bandera, 2017. "Validation of Calibrated Energy Models: Common Errors," Energies, MDPI, vol. 10(10), pages 1-19, October.
    6. Glasgo, Brock & Khan, Nyla & Azevedo, Inês Lima, 2020. "Simulating a residential building stock to support regional efficiency policy," Applied Energy, Elsevier, vol. 261(C).
    7. Raman, Naren Srivaths & Devaprasad, Karthikeya & Chen, Bo & Ingley, Herbert A. & Barooah, Prabir, 2020. "Model predictive control for energy-efficient HVAC operation with humidity and latent heat considerations," Applied Energy, Elsevier, vol. 279(C).
    8. Ahn, Jonghoon & Cho, Soolyeon, 2017. "Anti-logic or common sense that can hinder machine’s energy performance: Energy and comfort control models based on artificial intelligence responding to abnormal indoor environments," Applied Energy, Elsevier, vol. 204(C), pages 117-130.
    9. Wang, Wei & Chen, Jiayu & Huang, Gongsheng & Lu, Yujie, 2017. "Energy efficient HVAC control for an IPS-enabled large space in commercial buildings through dynamic spatial occupancy distribution," Applied Energy, Elsevier, vol. 207(C), pages 305-323.
    10. Rashid, Syed Aftab & Haider, Zeeshan & Chapal Hossain, S.M. & Memon, Kashan & Panhwar, Fazil & Mbogba, Momoh Karmah & Hu, Peng & Zhao, Gang, 2019. "Retrofitting low-cost heating ventilation and air-conditioning systems for energy management in buildings," Applied Energy, Elsevier, vol. 236(C), pages 648-661.
    11. Raman, Naren Srivaths & Chen, Bo & Barooah, Prabir, 2022. "On energy-efficient HVAC operation with Model Predictive Control: A multiple climate zone study," Applied Energy, Elsevier, vol. 324(C).
    12. Yang, Tao & Pan, Yiqun & Mao, Jiachen & Wang, Yonglong & Huang, Zhizhong, 2016. "An automated optimization method for calibrating building energy simulation models with measured data: Orientation and a case study," Applied Energy, Elsevier, vol. 179(C), pages 1220-1231.
    13. Burek, Jasmina & Nutter, Darin W., 2019. "A life cycle assessment-based multi-objective optimization of the purchased, solar, and wind energy for the grocery, perishables, and general merchandise multi-facility distribution center network," Applied Energy, Elsevier, vol. 235(C), pages 1427-1446.
    14. Yang, Shiyu & Wan, Man Pun & Ng, Bing Feng & Dubey, Swapnil & Henze, Gregor P. & Chen, Wanyu & Baskaran, Krishnamoorthy, 2020. "Experimental study of model predictive control for an air-conditioning system with dedicated outdoor air system," Applied Energy, Elsevier, vol. 257(C).
    15. Islam Elbayoumi Salem & Ahmed Mohamed Elbaz & Alamir Al-Alawi & Nasser Alhamar Alkathiri & Kareem A. Rashwan, 2022. "Investigating the Role of Green Hotel Sustainable Strategies to Improve Customer Cognitive and Affective Image: Evidence from PLS-SEM and fsQCA," Sustainability, MDPI, vol. 14(6), pages 1-17, March.
    16. Amir Faraji & Maria Rashidi & Fatemeh Rezaei & Payam Rahnamayiezekavat, 2023. "A Meta-Synthesis Review of Occupant Comfort Assessment in Buildings (2002–2022)," Sustainability, MDPI, vol. 15(5), pages 1-36, February.
    17. Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
    18. Sun, Kaiyu & Hong, Tianzhen & Taylor-Lange, Sarah C. & Piette, Mary Ann, 2016. "A pattern-based automated approach to building energy model calibration," Applied Energy, Elsevier, vol. 165(C), pages 214-224.
    19. Kuang, Yanqing & Chen, Yang & Hu, Mengqi & Yang, Dong, 2017. "Influence analysis of driver behavior and building category on economic performance of electric vehicle to grid and building integration," Applied Energy, Elsevier, vol. 207(C), pages 427-437.
    20. Østergård, Torben & Jensen, Rasmus Lund & Maagaard, Steffen Enersen, 2018. "A comparison of six metamodeling techniques applied to building performance simulations," Applied Energy, Elsevier, vol. 211(C), pages 89-103.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:190:y:2017:i:c:p:997-1007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.