IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i3p636-d1328395.html
   My bibliography  Save this article

A Refined DER-Level Transient Stability Prediction Method Considering Time-Varying Spatial–Temporal Correlations in Microgrids

Author

Listed:
  • Huimin Zhao

    (CRRC Zhuzhou Electric Locomotive Institute Co., Ltd., Zhuzhou 412001, China)

  • Lili He

    (College of Electrical and Information Engineering, Hunan University, Changsha 410012, China)

  • Yelun Peng

    (College of Electrical and Information Engineering, Hunan University, Changsha 410012, China)

  • Zhikang Shuai

    (College of Electrical and Information Engineering, Hunan University, Changsha 410012, China)

  • Zhixue Zhang

    (CRRC Zhuzhou Electric Locomotive Institute Co., Ltd., Zhuzhou 412001, China)

  • Liang Hu

    (CRRC Zhuzhou Electric Locomotive Institute Co., Ltd., Zhuzhou 412001, China)

Abstract

The transient responses of distributed energy resources (DERs) in a microgrid are dynamically correlated in spatial and temporal dimensions. Hence, the transient stability prediction in microgrids would require an effective modeling of time-varying correlations and the mining of spatial–temporal features of electrical data. This paper proposes a refined DER-level transient stability prediction method for microgrids considering the time-varying spatial–temporal correlations of DERs. First, the spatial–temporal dynamic correlation of DERs was extracted and modeled by an attention-based mechanism. Then, a spatial–temporal graph convolution network was proposed to predict the dynamics of unstable DERs and the instability severity trend in a microgrid. The TSP model consisted of three parts: (1) several stacked spatial–temporal convolution modules to simultaneously mine the spatial–temporal dynamic features of microgrids, (2) an unstable DER identification module to predict the microgrid system stability and identify unstable DERs, and (3) an instability severity trend prediction module for DERs in a microgrid. The test results on a realistic 16-bus 10-DER microgrid demonstrated that the proposed prediction method possessed the desirable reliability and interpretability and outperformed the state-of-the-art baselines in unstable DER identifications and DER instability severity trend predictions.

Suggested Citation

  • Huimin Zhao & Lili He & Yelun Peng & Zhikang Shuai & Zhixue Zhang & Liang Hu, 2024. "A Refined DER-Level Transient Stability Prediction Method Considering Time-Varying Spatial–Temporal Correlations in Microgrids," Energies, MDPI, vol. 17(3), pages 1-19, January.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:3:p:636-:d:1328395
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/3/636/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/3/636/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kaur, Amandeep & Kaushal, Jitender & Basak, Prasenjit, 2016. "A review on microgrid central controller," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 338-345.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hirsch, Adam & Parag, Yael & Guerrero, Josep, 2018. "Microgrids: A review of technologies, key drivers, and outstanding issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 402-411.
    2. Robert Antonio Salas-Puente & Silvia Marzal & Raúl González-Medina & Emilio Figueres & Gabriel Garcera, 2018. "Power Management of the DC Bus Connected Converters in a Hybrid AC/DC Microgrid Tied to the Main Grid," Energies, MDPI, vol. 11(4), pages 1-22, March.
    3. Xu, Zhirong & Yang, Ping & Zheng, Chengli & Zhang, Yujia & Peng, Jiajun & Zeng, Zhiji, 2018. "Analysis on the organization and Development of multi-microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2204-2216.
    4. Moshammed Nishat Tasnim & Tofael Ahmed & Monjila Afrin Dorothi & Shameem Ahmad & G. M. Shafiullah & S. M. Ferdous & Saad Mekhilef, 2023. "Voltage-Oriented Control-Based Three-Phase, Three-Leg Bidirectional AC–DC Converter with Improved Power Quality for Microgrids," Energies, MDPI, vol. 16(17), pages 1-32, August.
    5. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    6. Yu, Moduo & Huang, Wentao & Tai, Nengling & Zheng, Xiaodong & Wu, Pan & Chen, Weidong, 2018. "Transient stability mechanism of grid-connected inverter-interfaced distributed generators using droop control strategy," Applied Energy, Elsevier, vol. 210(C), pages 737-747.
    7. Andrzej Szromba, 2020. "The Unified Power Quality Conditioner Control Method Based on the Equivalent Conductance Signals of the Compensated Load," Energies, MDPI, vol. 13(23), pages 1-27, November.
    8. Xiao Qi & Yan Bai, 2017. "Improved Linear Active Disturbance Rejection Control for Microgrid Frequency Regulation," Energies, MDPI, vol. 10(7), pages 1-20, July.
    9. Thomas Price & Gordon Parker & Gail Vaucher & Robert Jane & Morris Berman, 2022. "Microgrid Energy Management during High-Stress Operation," Energies, MDPI, vol. 15(18), pages 1-11, September.
    10. Xiao Qi & Yan Bai & Huanhuan Luo & Yiqing Zhang & Guiping Zhou & Zhonghua Wei, 2018. "Fully-distributed Load Frequency Control Strategy in an Islanded Microgrid Considering Plug-In Electric Vehicles," Energies, MDPI, vol. 11(6), pages 1-18, June.
    11. Thanh Van Nguyen & Kyeong-Hwa Kim, 2019. "Power Flow Control Strategy and Reliable DC-Link Voltage Restoration for DC Microgrid under Grid Fault Conditions," Sustainability, MDPI, vol. 11(14), pages 1-27, July.
    12. Roslan, M.F. & Hannan, M.A. & Ker, Pin Jern & Uddin, M.N., 2019. "Microgrid control methods toward achieving sustainable energy management," Applied Energy, Elsevier, vol. 240(C), pages 583-607.
    13. Elkazaz, Mahmoud & Sumner, Mark & Thomas, David, 2021. "A hierarchical and decentralized energy management system for peer-to-peer energy trading," Applied Energy, Elsevier, vol. 291(C).
    14. Jose R Sicchar & Carlos T. Da Costa & Jose R. Silva & Raimundo C. Oliveira & Werbeston D. Oliveira, 2018. "A Load-Balance System Design of Microgrid Cluster Based on Hierarchical Petri Nets," Energies, MDPI, vol. 11(12), pages 1-30, November.
    15. Dagar, Annu & Gupta, Pankaj & Niranjan, Vandana, 2021. "Microgrid protection: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    16. Burmester, Daniel & Rayudu, Ramesh & Seah, Winston & Akinyele, Daniel, 2017. "A review of nanogrid topologies and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 760-775.
    17. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2017. "A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 341-363.
    18. Kanakadhurga, Dharmaraj & Prabaharan, Natarajan, 2022. "Demand side management in microgrid: A critical review of key issues and recent trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    19. Burgio, Alessandro & Menniti, Daniele & Sorrentino, Nicola & Pinnarelli, Anna & Motta, Michele, 2018. "A compact nanogrid for home applications with a behaviour-tree-based central controller," Applied Energy, Elsevier, vol. 225(C), pages 14-26.
    20. Chen, Lei & Gao, Lingyun & Xing, Shuping & Chen, Zhicong & Wang, Weiwei, 2024. "Zero-carbon microgrid: Real-world cases, trends, challenges, and future research prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:3:p:636-:d:1328395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.