IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i2p515-d1323090.html
   My bibliography  Save this article

Reconfigurable Intelligent Surface-Assisted Secure Communication in Cognitive Radio Systems

Author

Listed:
  • Xinshui Wang

    (School of Computer Science, Qufu Normal University, Rizhao 276826, China)

  • Xu Wang

    (School of Computer Science, Qufu Normal University, Rizhao 276826, China)

  • Jimin Ge

    (School of Computer Science, Qufu Normal University, Rizhao 276826, China)

  • Zhibin Liu

    (School of Computer Science, Qufu Normal University, Rizhao 276826, China)

  • Yuefeng Ma

    (School of Computer Science, Qufu Normal University, Rizhao 276826, China)

  • Xingwang Li

    (School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454099, China)

Abstract

A reconfigurable intelligent reflective surface (RIS)-assisted cognitive radio (CR) multiple-input multiple-output (MIMO) secure communication system is considered. In the presence of an eavesdropper, a primary base station (PBS) and a cognitive base station (CBS) equipped with multiple antennas communicate to a primary user (PU) and a secondary user (SU), respectively. In order to maximize the achievable secrecy rate of the system, the secrecy rate maximization problem is first transformed into a secure energy efficiency (SEE) problem using an objective function. Then, the security energy efficiency of the system is maximized by jointly optimizing the transmit beam formation of the base station and the reflected beam formation of the smart reflecting surface under the conditions that the total transmitted power constraint and the interference power constraint are satisfied. To address the difficulty in solving the resulting optimization problem, we apply an algorithm based on alternating optimization and semidefinite relaxation, as well as Dinklbach’s algorithm, to solve the problem. Simulation results show that this method can significantly improve the safety energy efficiency of the system.

Suggested Citation

  • Xinshui Wang & Xu Wang & Jimin Ge & Zhibin Liu & Yuefeng Ma & Xingwang Li, 2024. "Reconfigurable Intelligent Surface-Assisted Secure Communication in Cognitive Radio Systems," Energies, MDPI, vol. 17(2), pages 1-16, January.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:515-:d:1323090
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/2/515/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/2/515/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Werner Dinkelbach, 1967. "On Nonlinear Fractional Programming," Management Science, INFORMS, vol. 13(7), pages 492-498, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tunjo Perić & Josip Matejaš & Zoran Babić, 2023. "Advantages, sensitivity and application efficiency of the new iterative method to solve multi-objective linear fractional programming problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(3), pages 751-767, September.
    2. M. Golbabapour & M. Reza Zahabi, 2024. "Sum rate maximization for mm-wave multi-user hybrid IRS-assisted MIMO systems," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 87(3), pages 593-604, November.
    3. Tien Mai & Arunesh Sinha, 2022. "Safe Delivery of Critical Services in Areas with Volatile Security Situation via a Stackelberg Game Approach," Papers 2204.11451, arXiv.org.
    4. Park, Chong Hyun & Lim, Heejong, 2021. "A parametric approach to integer linear fractional programming: Newton’s and Hybrid-Newton methods for an optimal road maintenance problem," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1030-1039.
    5. Yong Xia & Longfei Wang & Xiaohui Wang, 2020. "Globally minimizing the sum of a convex–concave fraction and a convex function based on wave-curve bounds," Journal of Global Optimization, Springer, vol. 77(2), pages 301-318, June.
    6. H. Konno & K. Tsuchiya & R. Yamamoto, 2007. "Minimization of the Ratio of Functions Defined as Sums of the Absolute Values," Journal of Optimization Theory and Applications, Springer, vol. 135(3), pages 399-410, December.
    7. Henk Kiers, 1995. "Maximization of sums of quotients of quadratic forms and some generalizations," Psychometrika, Springer;The Psychometric Society, vol. 60(2), pages 221-245, June.
    8. Luca Consolini & Marco Locatelli & Jiulin Wang & Yong Xia, 2020. "Efficient local search procedures for quadratic fractional programming problems," Computational Optimization and Applications, Springer, vol. 76(1), pages 201-232, May.
    9. Harald Dyckhoff & Katrin Allen, 1999. "Theoretische Begründung einer Effizienzanalyse mittels Data Envelopment Analysis (DEA)," Schmalenbach Journal of Business Research, Springer, vol. 51(5), pages 411-436, May.
    10. Smail Addoune & Karima Boufi & Ahmed Roubi, 2018. "Proximal Bundle Algorithms for Nonlinearly Constrained Convex Minimax Fractional Programs," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 212-239, October.
    11. Feng Guo & Liguo Jiao, 2023. "A new scheme for approximating the weakly efficient solution set of vector rational optimization problems," Journal of Global Optimization, Springer, vol. 86(4), pages 905-930, August.
    12. Birbil, S.I. & Frenk, J.B.G. & Zhang, S., 2004. "Generalized Fractional Programming With User Interaction," ERIM Report Series Research in Management ERS-2004-033-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    13. Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.
    14. Cook, Wade D. & Zhu, Joe, 2007. "Within-group common weights in DEA: An analysis of power plant efficiency," European Journal of Operational Research, Elsevier, vol. 178(1), pages 207-216, April.
    15. Wassila Drici & Fatma Zohra Ouail & Mustapha Moulaï, 2018. "Optimizing a linear fractional function over the integer efficient set," Annals of Operations Research, Springer, vol. 267(1), pages 135-151, August.
    16. Meena K. Bector & I. Husain & S. Chandra & C. R. Bector, 1988. "A duality model for a generalized minmax program," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(5), pages 493-501, October.
    17. Vaithilingam Jeyakumar & Gue Myung Lee & Jae Hyoung Lee & Yingkun Huang, 2024. "Sum-of-Squares Relaxations in Robust DC Optimization and Feature Selection," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 308-343, January.
    18. Laurent Alfandari & Alborz Hassanzadeh & Ivana Ljubić, 2021. "An Exact Method for Assortment Optimization under the Nested Logit Model," Working Papers hal-02463159, HAL.
    19. Víctor Adame-García & Fernando Fernández-Rodríguez & Simón Sosvilla-Rivero, 2017. "“Resolution of optimization problems and construction of efficient portfolios: An application to the Euro Stoxx 50 index"," IREA Working Papers 201702, University of Barcelona, Research Institute of Applied Economics, revised Feb 2017.
    20. A. Roubi, 2000. "Method of Centers for Generalized Fractional Programming," Journal of Optimization Theory and Applications, Springer, vol. 107(1), pages 123-143, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:515-:d:1323090. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.