IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i2p418-d1319446.html
   My bibliography  Save this article

Site Selection and Capacity Determination of Electric Hydrogen Charging Integrated Station Based on Voronoi Diagram and Particle Swarm Algorithm

Author

Listed:
  • Xueqin Tian

    (China Electric Power Research Institute Co., Ltd., Haidian District, Beijing 100192, China
    School of Electrical Engineering, Dalian University of Technology, Dalian 116024, China)

  • Heng Yang

    (School of Electrical Engineering, Dalian University of Technology, Dalian 116024, China)

  • Yangyang Ge

    (Electric Power Research Institute of State Grid Liaoning Electric Power Co., Ltd., Shenyang 110006, China)

  • Tiejiang Yuan

    (School of Electrical Engineering, Dalian University of Technology, Dalian 116024, China)

Abstract

In response to challenges in constructing charging and hydrogen refueling facilities during the transition from conventional fuel vehicles to electric and hydrogen fuel cell vehicles, this paper introduces an innovative method for siting and capacity determination of Electric Hydrogen Charging Integrated Stations (EHCIS). In emphasizing the calculation of vehicle charging and hydrogen refueling demands, the proposed approach employs the Voronoi diagram and the particle swarm algorithm. Initially, Origin–Destination (OD) pairs represent car starting and endpoints, portraying travel demands. Utilizing the traffic network model, Dijkstra’s algorithm determines the shortest path for new energy vehicles, with the Monte Carlo simulation obtaining electric hydrogen energy demands. Subsequently, the Voronoi diagram categorizes the service scope of EHCIS, determining the equipment capacity while considering charging and refueling capabilities. Furthermore, the Voronoi diagram is employed to delineate the EHCIS service scope, determine the equipment capacity, and consider distance constraints, enhancing the rationality of site and service scope divisions. Finally, a dynamic optimal current model framework based on second-order cone relaxation is established for distribution networks. This framework plans each element of the active distribution network, ensuring safe and stable operation upon connection to EHCIS. To minimize the total social cost of EHCIS and address the constraints related to charging equipment and hydrogen production, a siting and capacity model is developed and solved using a particle swarm algorithm. Simulation planning in Sioux Falls city and the IEEE33 network validates the effectiveness and feasibility of the proposed method, ensuring stable power grid operation while meeting automotive energy demands.

Suggested Citation

  • Xueqin Tian & Heng Yang & Yangyang Ge & Tiejiang Yuan, 2024. "Site Selection and Capacity Determination of Electric Hydrogen Charging Integrated Station Based on Voronoi Diagram and Particle Swarm Algorithm," Energies, MDPI, vol. 17(2), pages 1-26, January.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:418-:d:1319446
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/2/418/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/2/418/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Maozhi & Lu, Hao & Chang, Xiqiang & Liao, Haiyan, 2023. "An optimization on an integrated energy system of combined heat and power, carbon capture system and power to gas by considering flexible load," Energy, Elsevier, vol. 273(C).
    2. Baohong Jin & Zhichao Liu & Yichuan Liao, 2023. "Exploring the Impact of Regional Integrated Energy Systems Performance by Energy Storage Devices Based on a Bi-Level Dynamic Optimization Model," Energies, MDPI, vol. 16(6), pages 1-21, March.
    3. Iliopoulou, Christina & Kampitakis, Emmanouil & Kepaptsoglou, Konstantinos & Vlahogianni, Eleni I., 2022. "Dynamic traffic-aware auction-based signal control under vehicle to infrastructure communication," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ilea, Flavia-Maria & Cormos, Ana-Maria & Cristea, Vasile-Mircea & Cormos, Calin-Cristian, 2023. "Enhancing the post-combustion carbon dioxide carbon capture plant performance by setpoints optimization of the decentralized multi-loop and cascade control system," Energy, Elsevier, vol. 275(C).
    2. Rendall, Joseph & Elatar, Ahmed & Nawaz, Kashif & Sun, Jian, 2023. "Medium-temperature phase change material integration in domestic heat pump water heaters for improved thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    3. Zhu, Hengyi & Tan, Peng & He, Ziqian & Ma, Lun & Zhang, Cheng & Fang, Qingyan & Chen, Gang, 2023. "Revealing steam temperature characteristics for a double-reheat unit under coal calorific value variation," Energy, Elsevier, vol. 283(C).
    4. Wu, Min & Xu, Jiazhu & Shi, Zhenglu, 2023. "Low carbon economic dispatch of integrated energy system considering extended electric heating demand response," Energy, Elsevier, vol. 278(PA).
    5. Shen, Haotian & Zhang, Hualiang & Xu, Yujie & Chen, Haisheng & Zhang, Zhilai & Li, Wenkai & Su, Xu & Xu, Yalin & Zhu, Yilin, 2024. "Two stage robust economic dispatching of microgrid considering uncertainty of wind, solar and electricity load along with carbon emission predicted by neural network model," Energy, Elsevier, vol. 300(C).
    6. Hao Yu & Yibo Wang & Chuang Liu & Shunjiang Wang & Chunyang Hao & Jian Xiong, 2024. "Optimization and Scheduling Method for Power Systems Considering Wind Power Forward/Reverse Peaking Scenarios," Energies, MDPI, vol. 17(5), pages 1-18, March.
    7. Elsir, Mohamed & Al-Sumaiti, Ameena Saad & El Moursi, Mohamed Shawky, 2024. "Towards energy transition: A novel day-ahead operation scheduling strategy for demand response and hybrid energy storage systems in smart grid," Energy, Elsevier, vol. 293(C).
    8. Hou, Rui & Deng, Guangzhi & Wu, Minrong & Wang, Wei & Gao, Wei & Chen, Kang & Liu, Lijun & Dehan, Sim, 2023. "Optimum exploitation of an integrated energy system considering renewable sources and power-heat system and energy storage," Energy, Elsevier, vol. 282(C).
    9. Kun Li & Yulong Ying & Xiangyu Yu & Jingchao Li, 2024. "Optimal Scheduling of Electricity and Carbon in Multi-Park Integrated Energy Systems," Energies, MDPI, vol. 17(9), pages 1-30, April.
    10. Wu, Mou & Yan, Rujing & Zhang, Jing & Fan, Junqiu & Wang, Jiangjiang & Bai, Zhang & He, Yu & Cao, Guoqiang & Hu, Keling, 2024. "An enhanced stochastic optimization for more flexibility on integrated energy system with flexible loads and a high penetration level of renewables," Renewable Energy, Elsevier, vol. 227(C).
    11. Huang, Shangjiu & Lu, Hao & Chen, Maozhi & Zhao, Wenjun, 2023. "Integrated energy system scheduling considering the correlation of uncertainties," Energy, Elsevier, vol. 283(C).
    12. Jun Tang, 2024. "How the Smart Energy Can Contribute towards Achieving the Sustainable Development Goal 7," Sustainability, MDPI, vol. 16(17), pages 1-25, September.
    13. Jun Yang & Linjun Zeng & Kangjie He & Yongguo Gong & Zhenhua Zhang & Kun Chen, 2024. "Optimization of the Joint Operation of an Electricity–Heat–Hydrogen–Gas Multi-Energy System Containing Hybrid Energy Storage and Power-to-Gas–Combined Heat and Power," Energies, MDPI, vol. 17(13), pages 1-19, June.
    14. Junhua Xiong & Huihang Li & Tingling Wang, 2023. "Low-Carbon Economic Dispatch of an Integrated Electricity–Gas–Heat Energy System with Carbon Capture System and Organic Rankine Cycle," Energies, MDPI, vol. 16(24), pages 1-25, December.
    15. Kangjie He & Linjun Zeng & Jun Yang & Yongguo Gong & Zhenhua Zhang & Kun Chen, 2024. "Optimization Strategy for Low-Carbon Economy of Integrated Energy System Considering Carbon Capture-Two Stage Power-to-Gas Hydrogen Coupling," Energies, MDPI, vol. 17(13), pages 1-22, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:418-:d:1319446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.