IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i21p9256-d1506100.html
   My bibliography  Save this article

Considering Carbon–Hydrogen Coupled Integrated Energy Systems: A Pathway to Sustainable Energy Transition in China Under Uncertainty

Author

Listed:
  • Anjie Lu

    (School of Government, Nanjing University, Nanjing 210000, China)

  • Jianguo Zhou

    (School of Government, Nanjing University, Nanjing 210000, China)

  • Minglei Qin

    (Nanjing Power Supply Company, State Jiangsu Electric Power Co., Ltd., Nanjing 210000, China)

  • Danchen Liu

    (Nanjing Jiangbei New Area Construction and Transportation Bureau, Nanjing 210000, China)

Abstract

The low-carbon construction of integrated energy systems is a crucial path to achieving dual carbon goals, with the power-generation side having the greatest potential for emissions reduction and the most direct means of reduction, which is a current research focus. However, existing studies lack the precise modeling of carbon capture devices and the cascaded utilization of hydrogen energy. Therefore, this paper establishes a carbon capture power plant model based on a comprehensive, flexible operational mode and a coupled model of a two-stage P2G (Power-to-Gas) device, exploring the “energy time-shift” characteristics of the coupled system. IGDT (Information Gap Decision Theory) is used to discuss the impact of uncertainties on the power generation side system. The results show that by promoting the consumption of clean energy and utilizing the high energy efficiency of hydrogen while reducing reliance on fossil fuels, the proposed system not only meets current energy demands but also achieves a more efficient emission reduction, laying a solid foundation for a sustainable future. By considering the impact of uncertainties, the system ensures resilience and adaptability under fluctuating renewable energy supply conditions, making a significant contribution to the field of sustainable energy transition.

Suggested Citation

  • Anjie Lu & Jianguo Zhou & Minglei Qin & Danchen Liu, 2024. "Considering Carbon–Hydrogen Coupled Integrated Energy Systems: A Pathway to Sustainable Energy Transition in China Under Uncertainty," Sustainability, MDPI, vol. 16(21), pages 1-32, October.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:21:p:9256-:d:1506100
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/21/9256/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/21/9256/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lu, Qing & Fang, Huaxin & Hou, Jianchao, 2024. "The impact of energy supply side on the diffusion of low-carbon transformation on energy demand side under low-carbon policies in China," Energy, Elsevier, vol. 307(C).
    2. Zeng, Bo & Zhou, Yinyu & Xu, Xinzhu & Cai, Danting, 2024. "Bi-level planning approach for incorporating the demand-side flexibility of cloud data centers under electricity-carbon markets," Applied Energy, Elsevier, vol. 357(C).
    3. Chen, Qiang & Dong, Yixuan & Ding, Jing & Wang, Weilong & Lu, Jianfeng, 2024. "Thermochemical energy storage analysis of solar driven carbon dioxide reforming of methane in SiC-foam cavity reactor," Renewable Energy, Elsevier, vol. 224(C).
    4. Jiang, Yunpeng & Ren, Zhouyang & Lu, Chunhao & Li, Hui & Yang, Zhixue, 2024. "A region-based low-carbon operation analysis method for integrated electricity-hydrogen-gas systems," Applied Energy, Elsevier, vol. 355(C).
    5. Chen, Maozhi & Lu, Hao & Chang, Xiqiang & Liao, Haiyan, 2023. "An optimization on an integrated energy system of combined heat and power, carbon capture system and power to gas by considering flexible load," Energy, Elsevier, vol. 273(C).
    6. Alam, Khandoker Shahjahan & Kaif, A.M.A. Daiyan & Das, Sajal K., 2024. "A blockchain-based optimal peer-to-peer energy trading framework for decentralized energy management with in a virtual power plant: Lab scale studies and large scale proposal," Applied Energy, Elsevier, vol. 365(C).
    7. Mikulčić, Hrvoje & Ridjan Skov, Iva & Dominković, Dominik Franjo & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Tan, Raymond & Duić, Neven & Hidayah Mohamad, Siti Nur & Wang, Xuebin, 2019. "Flexible Carbon Capture and Utilization technologies in future energy systems and the utilization pathways of captured CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    8. Ma, Yiming & Wang, Haixin & Hong, Feng & Yang, Junyou & Chen, Zhe & Cui, Haoqian & Feng, Jiawei, 2021. "Modeling and optimization of combined heat and power with power-to-gas and carbon capture system in integrated energy system," Energy, Elsevier, vol. 236(C).
    9. Pannee Suanpang & Pitchaya Jamjuntr, 2024. "Optimal Electric Vehicle Battery Management Using Q-learning for Sustainability," Sustainability, MDPI, vol. 16(16), pages 1-50, August.
    10. Wu, Yan & Aziz, Syed Mahfuzul & Haque, Mohammed H., 2024. "Vehicle-to-home operation and multi-location charging of electric vehicles for energy cost optimisation of households with photovoltaic system and battery energy storage," Renewable Energy, Elsevier, vol. 221(C).
    11. Cao, Yuwei & Meng, Yiqun & Zhang, Zongyue & Yang, Qing & Li, Yifei & Liu, Chuang & Ba, Shusong, 2024. "Life cycle environmental analysis of offshore wind power: A case study of the large-scale offshore wind farm in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    12. Li, Hongze & Sun, Dongyang & Li, Bingkang & Wang, Xuejie & Zhao, Yihang & Wei, Mengru & Dang, Xiaolu, 2023. "Collaborative optimization of VRB-PS hybrid energy storage system for large-scale wind power grid integration," Energy, Elsevier, vol. 265(C).
    13. Qiankun Chang & Yuanfeng Huang & Kaiyan Liu & Xin Xu & Yaohua Zhao & Song Pan, 2024. "Optimization Control Strategies and Evaluation Metrics of Cooling Systems in Data Centers: A Review," Sustainability, MDPI, vol. 16(16), pages 1-41, August.
    14. Chen Liu & Dami Moon & Atsushi Watabe, 2024. "Assessing the Economic and Environmental Impacts of Anaerobic Digestion for Municipal Organic Waste: A Case Study of Minamisanriku Town, Japan," Sustainability, MDPI, vol. 16(16), pages 1-17, August.
    15. Deng, Zhengxing & Hao, Yu, 2024. "Energy price uncertainty, environmental policy, and firm investment: A dynamic modeling approach," Energy Economics, Elsevier, vol. 130(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ilea, Flavia-Maria & Cormos, Ana-Maria & Cristea, Vasile-Mircea & Cormos, Calin-Cristian, 2023. "Enhancing the post-combustion carbon dioxide carbon capture plant performance by setpoints optimization of the decentralized multi-loop and cascade control system," Energy, Elsevier, vol. 275(C).
    2. Elsir, Mohamed & Al-Sumaiti, Ameena Saad & El Moursi, Mohamed Shawky, 2024. "Towards energy transition: A novel day-ahead operation scheduling strategy for demand response and hybrid energy storage systems in smart grid," Energy, Elsevier, vol. 293(C).
    3. Huang, Shangjiu & Lu, Hao & Chen, Maozhi & Zhao, Wenjun, 2023. "Integrated energy system scheduling considering the correlation of uncertainties," Energy, Elsevier, vol. 283(C).
    4. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    5. Yang, Lin & Lv, Haodong & Jiang, Dalin & Fan, Jingli & Zhang, Xian & He, Weijun & Zhou, Jinsheng & Wu, Wenjing, 2020. "Whether CCS technologies will exacerbate the water crisis in China? —A full life-cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Róbert Csalódi & Tímea Czvetkó & Viktor Sebestyén & János Abonyi, 2022. "Sectoral Analysis of Energy Transition Paths and Greenhouse Gas Emissions," Energies, MDPI, vol. 15(21), pages 1-26, October.
    7. Min Pang & Yichang Zhang & Sha He & Qiong Li, 2023. "Influencing Factors and Their Influencing Mechanisms on Integrated Power and Gas System Coupling," Sustainability, MDPI, vol. 15(17), pages 1-13, September.
    8. Işık, Cem & Kuziboev, Bekhzod & Ongan, Serdar & Saidmamatov, Olimjon & Mirkhoshimova, Mokhirakhon & Rajabov, Alibek, 2024. "The volatility of global energy uncertainty: Renewable alternatives," Energy, Elsevier, vol. 297(C).
    9. Xueqin Tian & Heng Yang & Yangyang Ge & Tiejiang Yuan, 2024. "Site Selection and Capacity Determination of Electric Hydrogen Charging Integrated Station Based on Voronoi Diagram and Particle Swarm Algorithm," Energies, MDPI, vol. 17(2), pages 1-26, January.
    10. Wang, Shouxiang & Wang, Shaomin & Zhao, Qianyu & Dong, Shuai & Li, Hao, 2023. "Optimal dispatch of integrated energy station considering carbon capture and hydrogen demand," Energy, Elsevier, vol. 269(C).
    11. Zhu, Hengyi & Tan, Peng & He, Ziqian & Ma, Lun & Zhang, Cheng & Fang, Qingyan & Chen, Gang, 2023. "Revealing steam temperature characteristics for a double-reheat unit under coal calorific value variation," Energy, Elsevier, vol. 283(C).
    12. Chang, Yuan & Gao, Siqi & Ma, Qian & Wei, Ying & Li, Guoping, 2024. "Techno-economic analysis of carbon capture and utilization technologies and implications for China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    13. Xu, Jiazhu & Yi, Yuqin, 2023. "Multi-microgrid low-carbon economy operation strategy considering both source and load uncertainty: A Nash bargaining approach," Energy, Elsevier, vol. 263(PB).
    14. Son, Yeong Geon & Oh, Byeong Chan & Acquah, Moses Amoasi & Kim, Sung Yul, 2023. "Optimal facility combination set of integrated energy system based on consensus point between independent system operator and independent power producer," Energy, Elsevier, vol. 266(C).
    15. Liu, Dewen & Luo, Zhao & Qin, Jinghui & Wang, Hua & Wang, Gang & Li, Zhao & Zhao, Weijie & Shen, Xin, 2023. "Low-carbon dispatch of multi-district integrated energy systems considering carbon emission trading and green certificate trading," Renewable Energy, Elsevier, vol. 218(C).
    16. Dong, Haoxin & Shan, Zijing & Zhou, Jianli & Xu, Chuanbo & Chen, Wenjun, 2023. "Refined modeling and co-optimization of electric-hydrogen-thermal-gas integrated energy system with hybrid energy storage," Applied Energy, Elsevier, vol. 351(C).
    17. Wu, Yanjuan & Wang, Caiwei & Wang, Yunliang, 2024. "Cooperative game optimization scheduling of multi-region integrated energy system based on ADMM algorithm," Energy, Elsevier, vol. 302(C).
    18. Cui, Jia & Zhang, Ximing & Liu, Wei & Yan, Xinyue & Hu, Zhen & Li, Chaoran & Huang, Jingbo, 2024. "A novel trading optimization strategy of source-load bilateral thermoelectric spot based on industrial parks interior," Energy, Elsevier, vol. 302(C).
    19. Zhong, Mingwei & Xu, Cancheng & Xian, Zikang & He, Guanglin & Zhai, Yanpeng & Zhou, Yongwang & Fan, Jingmin, 2024. "DTTM: A deep temporal transfer model for ultra-short-term online wind power forecasting," Energy, Elsevier, vol. 286(C).
    20. Brigagão, George Victor & de Medeiros, José Luiz & Araújo, Ofélia de Queiroz F. & Mikulčić, Hrvoje & Duić, Neven, 2021. "A zero-emission sustainable landfill-gas-to-wire oxyfuel process: Bioenergy with carbon capture and sequestration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:21:p:9256-:d:1506100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.