IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v146y2020icp1124-1133.html
   My bibliography  Save this article

Co-cultivation of two engineered strains of Synechocystis sp. PCC 6803 results in improved bioethanol production

Author

Listed:
  • Velmurugan, Rajendran
  • Incharoensakdi, Aran

Abstract

The Synechocystis sp. PCC 6803 is a promising host for ethanol biosynthesis from CO2. In this study, the production of ethanol was performed by utilizing two different engineered Synechocystis strains consisting of pdc-adh (pyruvate decarboxylase and alcohol dehydrogenase) overexpression (▲APX) and glgC-phaA (glucose-1-phosphate adenylyltransferase and PHA-specific β-ketothiolase) knockout (ΔGBK) pathways. This strategy involves destruction of glycogen and polyhydroxybutyrate (PHB) synthesis, both of which act as a storage polymer. The blocking of such biosynthetic pathways enabled Synechocystis to release various metabolites into the medium with an increase of chlorophyll a content and oxygen evolution due to the reduction of glycogen and PHB synthesis. In co-cultivation system, the extracellular metabolites released from knock out strain (ΔGBK) were utilized by the pdc-adh overexpressing strain (▲APX) and produced 4708 mg/L ethanol, which is comparatively higher than pdc-adh overexpressing strain containing glgC and PhaA knock out (ΔGBK-▲APX) (4103 mg/L). Although the concentration of ▲APX cells were lower in co-culture than in mono-culture, the overflow of metabolites from knock out Synechocystis and the consumption of those products by pdc-adh overexpressing Synechocystis in co-cultivation system improved the overall yield.

Suggested Citation

  • Velmurugan, Rajendran & Incharoensakdi, Aran, 2020. "Co-cultivation of two engineered strains of Synechocystis sp. PCC 6803 results in improved bioethanol production," Renewable Energy, Elsevier, vol. 146(C), pages 1124-1133.
  • Handle: RePEc:eee:renene:v:146:y:2020:i:c:p:1124-1133
    DOI: 10.1016/j.renene.2019.07.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119310456
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.07.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Naveena, Balakrishnan & Armshaw, Patricia & Pembroke, J. Tony & Gopinath, Kannapan Panchamoorthy, 2016. "Kinetic and optimisation studies on ultrasonic intensified photo-autotrophic ethanol production from Synechocystis sp," Renewable Energy, Elsevier, vol. 95(C), pages 522-530.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Varsha K. Singh & Sapana Jha & Palak Rana & Renu Soni & Rowland Lalnunpuii & Prashant K. Singh & Rajeshwar P. Sinha & Garvita Singh, 2024. "Cyanobacteria as a Biocatalyst for Sustainable Production of Biofuels and Chemicals," Energies, MDPI, vol. 17(2), pages 1-25, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:146:y:2020:i:c:p:1124-1133. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.