IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i2p307-d1314910.html
   My bibliography  Save this article

An Empirical Mode Decomposition-Based Hybrid Model for Sub-Hourly Load Forecasting

Author

Listed:
  • Chuang Yin

    (Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou 510006, China)

  • Nan Wei

    (Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou 510006, China)

  • Jinghang Wu

    (Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou 510006, China)

  • Chuhong Ruan

    (Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou 510006, China)

  • Xi Luo

    (Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou 510006, China)

  • Fanhua Zeng

    (Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2, Canada)

Abstract

Sub-hourly load forecasting can provide accurate short-term load forecasts, which is important for ensuring a secure operation and minimizing operating costs. Decomposition algorithms are suitable for extracting sub-series and improving forecasts in the context of short-term load forecasting. However, some existing algorithms like singular spectrum analysis (SSA) struggle to decompose high sampling frequencies and rapidly changing sub-hourly load series due to inherent flaws. Considering this, we propose an empirical mode decomposition-based hybrid model, named EMDHM. The decomposition part of this novel model first detrends the linear and periodic components from the original series. The remaining detrended long-range correlation series is simplified using empirical mode decomposition (EMD), generating intrinsic mode functions (IMFs). Fluctuation analysis is employed to identify high-frequency information, which divide IMFs into two types of long-range series. In the forecasting part, linear and periodic components are predicted by linear and trigonometric functions, while two long-range components are fitted by long short-term memory (LSTM) for prediction. Four forecasting series are ensembled to find the final result of EMDHM. In experiments, the model’s framework we propose is highly suitable for handling sub-hourly load datasets. The MAE, RMSE, MARNE, and R 2 of EMDHM have improved by 20.1%, 26.8%, 22.1%, and 5.4% compared to single LSTM, respectively. Furthermore, EMDHM can handle both short- and long-sequence, sub-hourly load forecasting tasks. Its R 2 only decreases by 4.7% when the prediction length varies from 48 to 720, which is significantly lower than other models.

Suggested Citation

  • Chuang Yin & Nan Wei & Jinghang Wu & Chuhong Ruan & Xi Luo & Fanhua Zeng, 2024. "An Empirical Mode Decomposition-Based Hybrid Model for Sub-Hourly Load Forecasting," Energies, MDPI, vol. 17(2), pages 1-17, January.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:307-:d:1314910
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/2/307/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/2/307/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei, Nan & Yin, Lihua & Li, Chao & Wang, Wei & Qiao, Weibiao & Li, Changjun & Zeng, Fanhua & Fu, Lingdi, 2022. "Short-term load forecasting using detrend singular spectrum fluctuation analysis," Energy, Elsevier, vol. 256(C).
    2. Huang, Haichao & Chen, Jingya & Sun, Rui & Wang, Shuang, 2022. "Short-term traffic prediction based on time series decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    3. Wei, Nan & Li, Changjun & Peng, Xiaolong & Li, Yang & Zeng, Fanhua, 2019. "Daily natural gas consumption forecasting via the application of a novel hybrid model," Applied Energy, Elsevier, vol. 250(C), pages 358-368.
    4. Kantelhardt, Jan W & Koscielny-Bunde, Eva & Rego, Henio H.A & Havlin, Shlomo & Bunde, Armin, 2001. "Detecting long-range correlations with detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(3), pages 441-454.
    5. Wei, Nan & Yin, Chuang & Yin, Lihua & Tan, Jingyi & Liu, Jinyuan & Wang, Shouxi & Qiao, Weibiao & Zeng, Fanhua, 2024. "Short-term load forecasting based on WM algorithm and transfer learning model," Applied Energy, Elsevier, vol. 353(PA).
    6. Zhu, Bangzhu & Han, Dong & Wang, Ping & Wu, Zhanchi & Zhang, Tao & Wei, Yi-Ming, 2017. "Forecasting carbon price using empirical mode decomposition and evolutionary least squares support vector regression," Applied Energy, Elsevier, vol. 191(C), pages 521-530.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jinyuan & Wang, Shouxi & Wei, Nan & Qiao, Weibiao & Li, Ze & Zeng, Fanhua, 2023. "A clustering-based feature enhancement method for short-term natural gas consumption forecasting," Energy, Elsevier, vol. 278(PB).
    2. Lavička, Hynek & Kracík, Jiří, 2020. "Fluctuation analysis of electric power loads in Europe: Correlation multifractality vs. Distribution function multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    3. Yong Wang & Nan Wei & Dejun Wan & Shouxi Wang & Zongming Yuan, 2019. "Numerical Simulation for Preheating New Submarine Hot Oil Pipelines," Energies, MDPI, vol. 12(18), pages 1-26, September.
    4. Vitanov, Nikolay K. & Sakai, Kenshi & Dimitrova, Zlatinka I., 2008. "SSA, PCA, TDPSC, ACFA: Useful combination of methods for analysis of short and nonstationary time series," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 187-202.
    5. Muchnik, Lev & Bunde, Armin & Havlin, Shlomo, 2009. "Long term memory in extreme returns of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4145-4150.
    6. Gao, Feng & Shao, Xueyan, 2022. "A novel interval decomposition ensemble model for interval carbon price forecasting," Energy, Elsevier, vol. 243(C).
    7. Zhong, Meirui & Zhang, Rui & Ren, Xiaohang, 2023. "The time-varying effects of liquidity and market efficiency of the European Union carbon market: Evidence from the TVP-SVAR-SV approach," Energy Economics, Elsevier, vol. 123(C).
    8. Wang, Dong-Hua & Yu, Xiao-Wen & Suo, Yuan-Yuan, 2012. "Statistical properties of the yuan exchange rate index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(12), pages 3503-3512.
    9. Huang, Wenyang & Zhao, Jianyu & Wang, Xiaokang, 2024. "Model-driven multimodal LSTM-CNN for unbiased structural forecasting of European Union allowances open-high-low-close price," Energy Economics, Elsevier, vol. 132(C).
    10. Katarzyna Rudnik & Anna Hnydiuk-Stefan & Aneta Kucińska-Landwójtowicz & Łukasz Mach, 2022. "Forecasting Day-Ahead Carbon Price by Modelling Its Determinants Using the PCA-Based Approach," Energies, MDPI, vol. 15(21), pages 1-23, October.
    11. Rao, Congjun & Zhang, Yue & Wen, Jianghui & Xiao, Xinping & Goh, Mark, 2023. "Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model," Energy, Elsevier, vol. 263(PC).
    12. Currenti, Gilda & Negro, Ciro Del & Lapenna, Vincenzo & Telesca, Luciano, 2005. "Fluctuation analysis of the hourly time variability of volcano-magnetic signals recorded at Mt. Etna Volcano, Sicily (Italy)," Chaos, Solitons & Fractals, Elsevier, vol. 23(5), pages 1921-1929.
    13. Ren, Fei & Gu, Gao-Feng & Zhou, Wei-Xing, 2009. "Scaling and memory in the return intervals of realized volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(22), pages 4787-4796.
    14. El Alaoui, Marwane & Benbachir, Saâd, 2013. "Multifractal detrended cross-correlation analysis in the MENA area," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5985-5993.
    15. Moghadam, Saman Salehi & Gholamian, Mohammad Reza & Zahedi, Rahim & Shaqaqifar, Maziar, 2024. "Designing a multi-purpose network of sustainable and closed-loop renewable energy supply chain, considering reliability and circular economy," Applied Energy, Elsevier, vol. 369(C).
    16. Jin Chen & Yue Chen & Wei Zhou, 2024. "Relation exploration between clean and fossil energy markets when experiencing climate change uncertainties: substitutes or complements?," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-17, December.
    17. Luis Alberiko Gil-Alaña & Carlos Pestana Barros & Zhongfei Chen, 2016. "The persistence of air pollution in four mega-cities of China," NCID Working Papers 04/2016, Navarra Center for International Development, University of Navarra.
    18. Zhang, Weibin & Zha, Huazhu & Zhang, Shuai & Ma, Lei, 2023. "Road section traffic flow prediction method based on the traffic factor state network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    19. Xu, Hua & Wang, Minggang & Jiang, Shumin & Yang, Weiguo, 2020. "Carbon price forecasting with complex network and extreme learning machine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    20. Wei Sun & Ming Duan, 2019. "Analysis and Forecasting of the Carbon Price in China’s Regional Carbon Markets Based on Fast Ensemble Empirical Mode Decomposition, Phase Space Reconstruction, and an Improved Extreme Learning Machin," Energies, MDPI, vol. 12(2), pages 1-27, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:307-:d:1314910. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.