Short-term load forecasting based on WM algorithm and transfer learning model
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2023.122087
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Luo, Xing & Zhang, Dongxiao & Zhu, Xu, 2022. "Combining transfer learning and constrained long short-term memory for power generation forecasting of newly-constructed photovoltaic plants," Renewable Energy, Elsevier, vol. 185(C), pages 1062-1077.
- Li, Yiman & Peng, Tian & Zhang, Chu & Sun, Wei & Hua, Lei & Ji, Chunlei & Muhammad Shahzad, Nazir, 2022. "Multi-step ahead wind speed forecasting approach coupling maximal overlap discrete wavelet transform, improved grey wolf optimization algorithm and long short-term memory," Renewable Energy, Elsevier, vol. 196(C), pages 1115-1126.
- Xiao, Xun & Mo, Huadong & Zhang, Yinan & Shan, Guangcun, 2022. "Meta-ANN – A dynamic artificial neural network refined by meta-learning for Short-Term Load Forecasting," Energy, Elsevier, vol. 246(C).
- Wei, Nan & Yin, Lihua & Li, Chao & Wang, Wei & Qiao, Weibiao & Li, Changjun & Zeng, Fanhua & Fu, Lingdi, 2022. "Short-term load forecasting using detrend singular spectrum fluctuation analysis," Energy, Elsevier, vol. 256(C).
- Wei, Nan & Yin, Lihua & Li, Chao & Liu, Jinyuan & Li, Changjun & Huang, Yuanyuan & Zeng, Fanhua, 2022. "Data complexity of daily natural gas consumption: Measurement and impact on forecasting performance," Energy, Elsevier, vol. 238(PC).
- Peng, Tian & Zhang, Chu & Zhou, Jianzhong & Nazir, Muhammad Shahzad, 2021. "An integrated framework of Bi-directional long-short term memory (BiLSTM) based on sine cosine algorithm for hourly solar radiation forecasting," Energy, Elsevier, vol. 221(C).
- Zang, Haixiang & Xu, Ruiqi & Cheng, Lilin & Ding, Tao & Liu, Ling & Wei, Zhinong & Sun, Guoqiang, 2021. "Residential load forecasting based on LSTM fusing self-attention mechanism with pooling," Energy, Elsevier, vol. 229(C).
- Xiong, Jinlin & Peng, Tian & Tao, Zihan & Zhang, Chu & Song, Shihao & Nazir, Muhammad Shahzad, 2023. "A dual-scale deep learning model based on ELM-BiLSTM and improved reptile search algorithm for wind power prediction," Energy, Elsevier, vol. 266(C).
- Huiting Zheng & Jiabin Yuan & Long Chen, 2017. "Short-Term Load Forecasting Using EMD-LSTM Neural Networks with a Xgboost Algorithm for Feature Importance Evaluation," Energies, MDPI, vol. 10(8), pages 1-20, August.
- Liang, Tao & Zhao, Qing & Lv, Qingzhao & Sun, Hexu, 2021. "A novel wind speed prediction strategy based on Bi-LSTM, MOOFADA and transfer learning for centralized control centers," Energy, Elsevier, vol. 230(C).
- Fazlipour, Zahra & Mashhour, Elaheh & Joorabian, Mahmood, 2022. "A deep model for short-term load forecasting applying a stacked autoencoder based on LSTM supported by a multi-stage attention mechanism," Applied Energy, Elsevier, vol. 327(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhewei Huang & Yawen Yi, 2024. "Short-Term Load Forecasting for Regional Smart Energy Systems Based on Two-Stage Feature Extraction and Hybrid Inverted Transformer," Sustainability, MDPI, vol. 16(17), pages 1-25, September.
- Moghadam, Saman Salehi & Gholamian, Mohammad Reza & Zahedi, Rahim & Shaqaqifar, Maziar, 2024. "Designing a multi-purpose network of sustainable and closed-loop renewable energy supply chain, considering reliability and circular economy," Applied Energy, Elsevier, vol. 369(C).
- Chuang Yin & Nan Wei & Jinghang Wu & Chuhong Ruan & Xi Luo & Fanhua Zeng, 2024. "An Empirical Mode Decomposition-Based Hybrid Model for Sub-Hourly Load Forecasting," Energies, MDPI, vol. 17(2), pages 1-17, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Chao & Lin, Hong & Hu, Heng & Yang, Ming & Ma, Li, 2024. "A hybrid model with combined feature selection based on optimized VMD and improved multi-objective coati optimization algorithm for short-term wind power prediction," Energy, Elsevier, vol. 293(C).
- Cheng, Lilin & Zang, Haixiang & Wei, Zhinong & Zhang, Fengchun & Sun, Guoqiang, 2022. "Evaluation of opaque deep-learning solar power forecast models towards power-grid applications," Renewable Energy, Elsevier, vol. 198(C), pages 960-972.
- Yu, Binbin & Li, Jianjing & Liu, Che & Sun, Bo, 2022. "A novel short-term electrical load forecasting framework with intelligent feature engineering," Applied Energy, Elsevier, vol. 327(C).
- Zhang, Chu & Li, Zhengbo & Ge, Yida & Liu, Qianlong & Suo, Leiming & Song, Shihao & Peng, Tian, 2024. "Enhancing short-term wind speed prediction based on an outlier-robust ensemble deep random vector functional link network with AOA-optimized VMD," Energy, Elsevier, vol. 296(C).
- Wei, Nan & Yin, Lihua & Li, Chao & Wang, Wei & Qiao, Weibiao & Li, Changjun & Zeng, Fanhua & Fu, Lingdi, 2022. "Short-term load forecasting using detrend singular spectrum fluctuation analysis," Energy, Elsevier, vol. 256(C).
- Zhang, Yue & Wang, Yeqin & Zhang, Chu & Qiao, Xiujie & Ge, Yida & Li, Xi & Peng, Tian & Nazir, Muhammad Shahzad, 2024. "State-of-health estimation for lithium-ion battery via an evolutionary Stacking ensemble learning paradigm of random vector functional link and active-state-tracking long–short-term memory neural netw," Applied Energy, Elsevier, vol. 356(C).
- Xiang, Ling & Fu, Xiaomengting & Yao, Qingtao & Zhu, Guopeng & Hu, Aijun, 2024. "A novel model for ultra-short term wind power prediction based on Vision Transformer," Energy, Elsevier, vol. 294(C).
- Mingping Liu & Xihao Sun & Qingnian Wang & Suhui Deng, 2022. "Short-Term Load Forecasting Using EMD with Feature Selection and TCN-Based Deep Learning Model," Energies, MDPI, vol. 15(19), pages 1-22, September.
- Ma, Zhengjing & Mei, Gang, 2022. "A hybrid attention-based deep learning approach for wind power prediction," Applied Energy, Elsevier, vol. 323(C).
- Liu, Qianlong & Zhang, Chu & Li, Zhengbo & Peng, Tian & Zhang, Zhao & Du, Dongsheng & Nazir, Muhammad Shahzad, 2024. "Multi-strategy adaptive guidance differential evolution algorithm using fitness-distance balance and opposition-based learning for constrained global optimization of photovoltaic cells and modules," Applied Energy, Elsevier, vol. 353(PA).
- Gao, Tian & Niu, Dongxiao & Ji, Zhengsen & Sun, Lijie, 2022. "Mid-term electricity demand forecasting using improved variational mode decomposition and extreme learning machine optimized by sparrow search algorithm," Energy, Elsevier, vol. 261(PB).
- Liu, Jinyuan & Wang, Shouxi & Wei, Nan & Qiao, Weibiao & Li, Ze & Zeng, Fanhua, 2023. "A clustering-based feature enhancement method for short-term natural gas consumption forecasting," Energy, Elsevier, vol. 278(PB).
- Shi, Jian & Teh, Jiashen, 2024. "Load forecasting for regional integrated energy system based on complementary ensemble empirical mode decomposition and multi-model fusion," Applied Energy, Elsevier, vol. 353(PB).
- Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
- Kandpal, Bakul & Pareek, Parikshit & Verma, Ashu, 2022. "A robust day-ahead scheduling strategy for EV charging stations in unbalanced distribution grid," Energy, Elsevier, vol. 249(C).
- Wang, Xinlin & Wang, Hao & Li, Shengping & Jin, Haizhen, 2024. "A reinforcement learning-based online learning strategy for real-time short-term load forecasting," Energy, Elsevier, vol. 305(C).
- Zhang, Yagang & Wang, Hui & Wang, Jingchao & Cheng, Xiaodan & Wang, Tong & Zhao, Zheng, 2024. "Ensemble optimization approach based on hybrid mode decomposition and intelligent technology for wind power prediction system," Energy, Elsevier, vol. 292(C).
- Bingjie Jin & Guihua Zeng & Zhilin Lu & Hongqiao Peng & Shuxin Luo & Xinhe Yang & Haojun Zhu & Mingbo Liu, 2022. "Hybrid LSTM–BPNN-to-BPNN Model Considering Multi-Source Information for Forecasting Medium- and Long-Term Electricity Peak Load," Energies, MDPI, vol. 15(20), pages 1-20, October.
- Jiaan Zhang & Chenyu Liu & Leijiao Ge, 2022. "Short-Term Load Forecasting Model of Electric Vehicle Charging Load Based on MCCNN-TCN," Energies, MDPI, vol. 15(7), pages 1-25, April.
- Ijaz Ul Haq & Amin Ullah & Samee Ullah Khan & Noman Khan & Mi Young Lee & Seungmin Rho & Sung Wook Baik, 2021. "Sequential Learning-Based Energy Consumption Prediction Model for Residential and Commercial Sectors," Mathematics, MDPI, vol. 9(6), pages 1-17, March.
More about this item
Keywords
Short-term load forecasting; Maximal information coefficient; Transfer forecasting; Wasserstein distance;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923014514. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.