IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i24p6474-d1550279.html
   My bibliography  Save this article

Experimental Assessment of Green Waste HTC Pellets: Kinetics, Efficiency and Emissions

Author

Listed:
  • Yaniel Garcia Lovella

    (Thermo and Fluid Dynamics (FLOW), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
    Center for Energy and Environmental Technology Assessment (CEETA), Universidad Central “Marta Abreu” de Las Villas (UCLV), Santa Clara 54830, Cuba
    Brussels Institute for Thermal-Fluid Systems and Clean Energy (BRITE), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
    Brussels Institute for Thermal-Fluid Systems and Clean Energy (BRITE), Belgium and Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium)

  • Abhishek Goel

    (Thermo and Fluid Dynamics (FLOW), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
    Brussels Institute for Thermal-Fluid Systems and Clean Energy (BRITE), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
    Brussels Institute for Thermal-Fluid Systems and Clean Energy (BRITE), Belgium and Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium)

  • Louis Garin

    (Nanomaterials Chemistry Research Unit, Université de Namur (UNamur), 5000 Namur, Belgium)

  • Julien Blondeau

    (Thermo and Fluid Dynamics (FLOW), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
    Brussels Institute for Thermal-Fluid Systems and Clean Energy (BRITE), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
    Brussels Institute for Thermal-Fluid Systems and Clean Energy (BRITE), Belgium and Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium)

  • Svend Bram

    (Thermo and Fluid Dynamics (FLOW), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
    Brussels Institute for Thermal-Fluid Systems and Clean Energy (BRITE), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
    Brussels Institute for Thermal-Fluid Systems and Clean Energy (BRITE), Belgium and Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium)

Abstract

The combustion of renewable solid fuels, such as biomass, is a reliable option for heat and power production. The availability of biomass resources within urban areas, such as tree leaves, small branches, grass, and other green city waste, creates an opportunity to valorize such resources. The energy densification of such resources using hydrothermal carbonization (HTC) and pelletization of the carbonized material could create a new generation of domestic boiler biofuel. However, combustion efficiency and emission assessments should be carried out for HTC pellets. The primary objective of this study is to assess HTC pellets, provided by a waste upgrade company, in terms of kinetics, combustion efficiency, and emissions, taking as reference base ENplus A1 certified softwood pellets. Therefore, thermogravimetric analysis and combustion tests were conducted for both fuels to achieve this. It was observed that a third peak of the burning rate during the solid carbon oxidation of HTC pellets indicated a high activation energy. Combustion tests showed a 7% increase in boiler efficiency for HTC pellets compared to softwood pellets. However, higher particulate matter (PM), NO x , and CO emissions were recorded during the HTC pellets test. The results suggest that optimizing the air/fuel ratio could further improve the performance of HTC pellets in domestic boilers.

Suggested Citation

  • Yaniel Garcia Lovella & Abhishek Goel & Louis Garin & Julien Blondeau & Svend Bram, 2024. "Experimental Assessment of Green Waste HTC Pellets: Kinetics, Efficiency and Emissions," Energies, MDPI, vol. 17(24), pages 1-23, December.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6474-:d:1550279
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/24/6474/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/24/6474/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Swarna Saha & Md Tahmid Islam & Joshua Calhoun & Toufiq Reza, 2023. "Effect of Hydrothermal Carbonization on Fuel and Combustion Properties of Shrimp Shell Waste," Energies, MDPI, vol. 16(14), pages 1-15, July.
    2. Sitek, Tomáš & Pospíšil, Jiří & Poláčik, Ján & Chýlek, Radomír, 2021. "Thermogravimetric analysis of solid biomass fuels and corresponding emission of fine particles," Energy, Elsevier, vol. 237(C).
    3. Ozgen, S. & Cernuschi, S. & Caserini, S., 2021. "An overview of nitrogen oxides emissions from biomass combustion for domestic heat production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Lu, Jau-Jang & Chen, Wei-Hsin, 2015. "Investigation on the ignition and burnout temperatures of bamboo and sugarcane bagasse by thermogravimetric analysis," Applied Energy, Elsevier, vol. 160(C), pages 49-57.
    5. Zuzanna Prus & Małgorzata Wilk, 2024. "Microplastics in Sewage Sludge: Worldwide Presence in Biosolids, Environmental Impact, Identification Methods and Possible Routes of Degradation, Including the Hydrothermal Carbonization Process," Energies, MDPI, vol. 17(17), pages 1-26, August.
    6. Marco Ugolini & Lucia Recchia & Heather E. Wray & Jan Wilco Dijkstra & Pavlina Nanou, 2024. "Environmental Assessment of Hydrothermal Treatment of Wet Bio-Residues from Forest-Based and Agro-Industries into Intermediate Bioenergy Carriers," Energies, MDPI, vol. 17(3), pages 1-28, January.
    7. Rago, Yogeshwari Pooja & Collard, François-Xavier & Görgens, Johann F. & Surroop, Dinesh & Mohee, Romeela, 2022. "Co-combustion of torrefied biomass-plastic waste blends with coal through TGA: Influence of synergistic behaviour," Energy, Elsevier, vol. 239(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Śliz, Maciej & Wilk, Małgorzata, 2020. "A comprehensive investigation of hydrothermal carbonization: Energy potential of hydrochar derived from Virginia mallow," Renewable Energy, Elsevier, vol. 156(C), pages 942-950.
    2. Hillig, Débora Moraes & Pohlmann, Juliana Gonçalves & Manera, Christian & Perondi, Daniele & Pereira, Fernando Marcelo & Altafini, Carlos Roberto & Godinho, Marcelo, 2020. "Evaluation of the structural changes of a char produced by slow pyrolysis of biomass and of a high-ash coal during its combustion and their role in the reactivity and flue gas emissions," Energy, Elsevier, vol. 202(C).
    3. Leandro C. de Morais & Amanda A. Maia & Pedro R. Resende & André H. Rosa & Leonel J. R. Nunes, 2022. "Thermochemical Conversion of Sugarcane Bagasse: A Comprehensive Analysis of Ignition and Burnout Temperatures," Clean Technol., MDPI, vol. 4(4), pages 1-11, November.
    4. Kuan, Yong-Hao & Wu, Fang-Hsien & Chen, Guan-Bang & Lin, Hsien-Tsung & Lin, Ta-Hui, 2020. "Study of the combustion characteristics of sewage sludge pyrolysis oil, heavy fuel oil, and their blends," Energy, Elsevier, vol. 201(C).
    5. Stolarski, Mariusz J. & Dudziec, Paweł & Krzyżaniak, Michał & Graban, Łukasz & Lajszner, Waldemar & Olba–Zięty, Ewelina, 2024. "How do key for the bioenergy industry properties of baled biomass change over two years of storage?," Renewable Energy, Elsevier, vol. 224(C).
    6. José Antonio Soriano & Reyes García-Contreras & Antonio José Carpio de Los Pinos, 2021. "Study of the Thermochemical Properties of Lignocellulosic Biomass from Energy Crops," Energies, MDPI, vol. 14(13), pages 1-18, June.
    7. Liu, Ziyang & He, Mingfei & Tang, Xiaoping & Yuan, Guofeng & Yang, Bin & Yu, Xiaohui & Wang, Zhifeng, 2024. "Capacity optimisation and multi-dimensional analysis of air-source heat pump heating system: A case study," Energy, Elsevier, vol. 294(C).
    8. Šnajdárek, Ladislav & Chýlek, Radomír & Pospíšil, Jiří, 2022. "Slow thermal decomposition of lignocelluloses compared to numerical model: Fine particle emission, gaseous products analysis," Energy, Elsevier, vol. 261(PB).
    9. Małgorzata Sieradzka & Agata Mlonka-Mędrala & Izabela Kalemba-Rec & Markus Reinmöller & Felix Küster & Wojciech Kalawa & Aneta Magdziarz, 2022. "Evaluation of Physical and Chemical Properties of Residue from Gasification of Biomass Wastes," Energies, MDPI, vol. 15(10), pages 1-19, May.
    10. Ozdemir, Saim & Şimşek, Aslı & Ozdemir, Serkan & Dede, Cemile, 2022. "Investigation of poultry slaughterhouse waste stream to produce bio-fuel for internal utilization," Renewable Energy, Elsevier, vol. 190(C), pages 274-282.
    11. Singara Veloo Kanageswari & Lope G. Tabil & Shahabaddine Sokhansanj, 2022. "Dust and Particulate Matter Generated during Handling and Pelletization of Herbaceous Biomass: A Review," Energies, MDPI, vol. 15(7), pages 1-18, April.
    12. Nikola Čajová Kantová & Michal Holubčík & Alexander Čaja & Juraj Trnka & Jozef Jandačka, 2022. "Analyses of Pellets Produced from Spruce Sawdust, Spruce Bark, and Pine Cones in Different Proportions," Energies, MDPI, vol. 15(8), pages 1-9, April.
    13. Steiner, Maximilian & Anca-Couce, Andrés & Hochenauer, Christoph & Buchmayr, Markus & Scharler, Robert, 2024. "Relevance and prediction of N2O in small-scale multi-fuel biomass furnaces using primary NOx reduction measures," Renewable Energy, Elsevier, vol. 229(C).
    14. Leonel J. R. Nunes & Abel M. Rodrigues & João C. O. Matias & Ana I. Ferraz & Ana C. Rodrigues, 2021. "Production of Biochar from Vine Pruning: Waste Recovery in the Wine Industry," Agriculture, MDPI, vol. 11(6), pages 1-15, May.
    15. Xu, Li & Li, Shengcai & Sun, Wanghu & Ma, Xin & Cao, Shuchao, 2020. "Combustion behaviors and characteristic parameters determination of sassafras wood under different heating conditions," Energy, Elsevier, vol. 203(C).
    16. Rocío Collado & Esperanza Monedero & Víctor Manuel Casero-Alonso & Licesio J. Rodríguez-Aragón & Juan José Hernández, 2022. "Almond Shells and Exhausted Olive Cake as Fuels for Biomass Domestic Boilers: Optimization, Performance and Pollutant Emissions," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
    17. Mau, Vivian & Gross, Amit, 2018. "Energy conversion and gas emissions from production and combustion of poultry-litter-derived hydrochar and biochar," Applied Energy, Elsevier, vol. 213(C), pages 510-519.
    18. Kamila Słupińska & Marek Wieruszewski & Piotr Szczypa & Anna Kożuch & Krzysztof Adamowicz, 2022. "Public Perception of the Use of Woody Biomass for Energy Purposes in the Evaluation of Content and Information Management on the Internet," Energies, MDPI, vol. 15(19), pages 1-11, September.
    19. Liu, Jiazheng & Zhong, Fei & Niu, Wenjuan & Su, Jing & Gao, Ziqi & Zhang, Kai, 2019. "Effects of heating rate and gas atmosphere on the pyrolysis and combustion characteristics of different crop residues and the kinetics analysis," Energy, Elsevier, vol. 175(C), pages 320-332.
    20. Riaz, Sajid & Oluwoye, Ibukun & Al-Abdeli, Yasir M., 2022. "Oxidative torrefaction of densified woody biomass: Performance, combustion kinetics and thermodynamics," Renewable Energy, Elsevier, vol. 199(C), pages 908-918.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6474-:d:1550279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.