Co-combustion of torrefied biomass-plastic waste blends with coal through TGA: Influence of synergistic behaviour
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2021.121859
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Atimtay, Aysel & Yurdakul, Sema, 2020. "Combustion and Co-Combustion characteristics of torrefied poultry litter with lignite," Renewable Energy, Elsevier, vol. 148(C), pages 1292-1301.
- Shi, Kaiqi & Oladejo, Jumoke Mojisola & Yan, Jiefeng & Wu, Tao, 2019. "Investigation on the interactions among lignocellulosic constituents and minerals of biomass and their influences on co-firing," Energy, Elsevier, vol. 179(C), pages 129-137.
- Liu, Zhijia & Hu, Wanhe & Jiang, Zehui & Mi, Bingbing & Fei, Benhua, 2016. "Investigating combustion behaviors of bamboo, torrefied bamboo, coal and their respective blends by thermogravimetric analysis," Renewable Energy, Elsevier, vol. 87(P1), pages 346-352.
- Li, Jun & Brzdekiewicz, Artur & Yang, Weihong & Blasiak, Wlodzimierz, 2012. "Co-firing based on biomass torrefaction in a pulverized coal boiler with aim of 100% fuel switching," Applied Energy, Elsevier, vol. 99(C), pages 344-354.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Růžičková, Jana & Raclavská, Helena & Juchelková, Dagmar & Kucbel, Marek & Raclavský, Konstantin & Švédová, Barbora & Šafář, Michal & Pfeifer, Christoph & Hrbek, Jitka, 2022. "Organic compounds in the char deposits characterising the combustion of unauthorised fuels in residential boilers," Energy, Elsevier, vol. 257(C).
- Dai, Ying & Sun, Meng & Fang, Hua & Yao, Huicong & Chen, Jianbiao & Tan, Jinzhu & Mu, Lin & Zhu, Yuezhao, 2024. "Co-combustion of binary and ternary blends of industrial sludge, lignite and pine sawdust via thermogravimetric analysis: Thermal behaviors, interaction effects, kinetics evaluation, and artificial ne," Renewable Energy, Elsevier, vol. 220(C).
- Gałko, Grzegorz & Mazur, Izabela & Rejdak, Michał & Jagustyn, Barbara & Hrabak, Joanna & Ouadi, Miloud & Jahangiri, Hessam & Sajdak, Marcin, 2023. "Evaluation of alternative refuse-derived fuel use as a valuable resource in various valorised applications," Energy, Elsevier, vol. 263(PD).
- Zhu, Hongmei & He, Donglin & Duan, Hao & Yin, Hong & Chen, Yafei & Chao, Xing & Zhang, Xianming & Gong, Haifeng, 2023. "Study on coupled combustion behaviors and kinetics of plastic pyrolysis by-product for oil," Energy, Elsevier, vol. 262(PA).
- Konstantin Slyusarsky & Anton Tolokolnikov & Artur Gubin & Albert Kaltaev & Alexander Gorshkov & Askar Asilbekov & Kirill Larionov, 2023. "Ignition and Emission Characteristics of Waste Tires Pyrolysis Char Co-Combustion with Peat and Sawdust," Energies, MDPI, vol. 16(10), pages 1-16, May.
- Hu, Fan & Xiong, Biao & Huang, Xiaohong & Liu, Zhaohui, 2023. "Theoretical analysis and experimental verification of diminishing the diffusion influence on determination of char oxidation kinetics by thermo-gravimetric analysis," Energy, Elsevier, vol. 275(C).
- Zhang, Jinzhi & Zhang, Ke & Huang, Jiangang & Feng, Yutong & Yellezuome, Dominic & Zhao, Ruidong & Chen, Tianju & Wu, Jinhu, 2024. "Synergistic effect and volatile emission characteristics during co-combustion of biomass and low-rank coal," Energy, Elsevier, vol. 289(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lasek, Janusz A. & Matuszek, Katarzyna & Hrycko, Piotr & Głód, Krzysztof & Li, Yueh-Heng, 2023. "The combustion of torrefied biomass in commercial-scale domestic boilers," Renewable Energy, Elsevier, vol. 216(C).
- Gürel, Barış & Kurtuluş, Karani & Yurdakul, Sema & Karaca Dolgun, Gülşah & Akman, Remzi & Önür, Muhammet Enes & Varol, Murat & Keçebaş, Ali & Gürbüz, Habib, 2024. "Combustion of chicken manure and Turkish lignite mixtures in a circulating fluidized bed," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
- Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
- Tran, Khanh-Quang & Luo, Xun & Seisenbaeva, Gulaim & Jirjis, Raida, 2013. "Stump torrefaction for bioenergy application," Applied Energy, Elsevier, vol. 112(C), pages 539-546.
- Miedema, Jan H. & Benders, René M.J. & Moll, Henri C. & Pierie, Frank, 2017. "Renew, reduce or become more efficient? The climate contribution of biomass co-combustion in a coal-fired power plant," Applied Energy, Elsevier, vol. 187(C), pages 873-885.
- Leonel J. R. Nunes & João C. O. Matias, 2020. "Biomass Torrefaction as a Key Driver for the Sustainable Development and Decarbonization of Energy Production," Sustainability, MDPI, vol. 12(3), pages 1-9, January.
- Chen, Wei-Hsin & Chen, Chih-Jung & Hung, Chen-I & Shen, Cheng-Hsien & Hsu, Heng-Wen, 2013. "A comparison of gasification phenomena among raw biomass, torrefied biomass and coal in an entrained-flow reactor," Applied Energy, Elsevier, vol. 112(C), pages 421-430.
- Li, Jiawei & Fan, Subo & Zhang, Xuyang & Chen, Zhichao & Qiao, Yanyu & Yuan, Zhenhua & Zeng, Lingyan & Li, Zhengqi, 2022. "Physicochemical structure, combustion characteristics and SiO2 properties of entrained flow gasification ash," Energy, Elsevier, vol. 251(C).
- Qiang Zhong & Jian Zhang & Yongbin Yang & Qian Li & Bin Xu & Tao Jiang, 2018. "Thermal Behavior of Coal Used in Rotary Kiln and Its Combustion Intensification," Energies, MDPI, vol. 11(5), pages 1-12, April.
- Bo Zhu & Bichen Shang & Xiao Guo & Chao Wu & Xiaoqiang Chen & Lingling Zhao, 2022. "Study on Combustion Characteristics and NOx Formation in 600 MW Coal-Fired Boiler Based on Numerical Simulation," Energies, MDPI, vol. 16(1), pages 1-30, December.
- Chen, Wei-Hsin & Peng, Jianghong & Bi, Xiaotao T., 2015. "A state-of-the-art review of biomass torrefaction, densification and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 847-866.
- Agbor, Ezinwa & Oyedun, Adetoyese Olajire & Zhang, Xiaolei & Kumar, Amit, 2016. "Integrated techno-economic and environmental assessments of sixty scenarios for co-firing biomass with coal and natural gas," Applied Energy, Elsevier, vol. 169(C), pages 433-449.
- Xue, Junjie & Chellappa, Thiago & Ceylan, Selim & Goldfarb, Jillian L., 2018. "Enhancing biomass + coal Co-firing scenarios via biomass torrefaction and carbonization: Case study of avocado pit biomass and Illinois No. 6 coal," Renewable Energy, Elsevier, vol. 122(C), pages 152-162.
- Pronobis, Marek & Wejkowski, Robert & Kalisz, Sylwester & Ciukaj, Szymon, 2023. "Conversion of a pulverized coal boiler into a torrefied biomass boiler," Energy, Elsevier, vol. 262(PB).
- Liu, Zhijia & Zhang, Tao & Zhang, Jian & Xiang, Hongzhong & Yang, Xiaomeng & Hu, Wanhe & Liang, Fang & Mi, Bingbing, 2018. "Ash fusion characteristics of bamboo, wood and coal," Energy, Elsevier, vol. 161(C), pages 517-522.
- Chen, Yun-Chun & Chen, Wei-Hsin & Lin, Bo-Jhih & Chang, Jo-Shu & Ong, Hwai Chyuan, 2016. "Impact of torrefaction on the composition, structure and reactivity of a microalga residue," Applied Energy, Elsevier, vol. 181(C), pages 110-119.
- Wu, Dongyin & Wang, Yuhao & Wang, Yang & Li, Sen & Wei, Xiaolin, 2016. "Release of alkali metals during co-firing biomass and coal," Renewable Energy, Elsevier, vol. 96(PA), pages 91-97.
- Oladejo, Jumoke M. & Adegbite, Stephen & Pang, Cheng Heng & Liu, Hao & Parvez, Ashak M. & Wu, Tao, 2017. "A novel index for the study of synergistic effects during the co-processing of coal and biomass," Applied Energy, Elsevier, vol. 188(C), pages 215-225.
- Liu, Yingzu & He, Yong & Wang, Zhihua & Xia, Jun & Wan, Kaidi & Whiddon, Ronald & Cen, Kefa, 2018. "Characteristics of alkali species release from a burning coal/biomass blend," Applied Energy, Elsevier, vol. 215(C), pages 523-531.
- Sermyagina, Ekaterina & Saari, Jussi & Kaikko, Juha & Vakkilainen, Esa, 2016. "Integration of torrefaction and CHP plant: Operational and economic analysis," Applied Energy, Elsevier, vol. 183(C), pages 88-99.
More about this item
Keywords
Co-combustion; Torrefaction; Municipal solid wastes; Synergistic interactions; Coal; Biomass-plastic blends;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pa:s0360544221021071. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.