IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i24p6372-d1546804.html
   My bibliography  Save this article

A Comprehensive Multi-Objective Optimization Study on the Thermodynamic Performance of a Supercritical CO 2 Brayton Cycle Incorporating Multi-Stage Main Compressor Intermediate Cooling

Author

Listed:
  • Lin Xu

    (School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, China)

  • Xiaojuan Niu

    (School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, China)

  • Wenpeng Hong

    (School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, China)

  • Wei Su

    (School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, China)

Abstract

This study proposes a supercritical carbon dioxide Brayton cycle incorporating multi-stage main compressor intermediate cooling (MMCIC sCO 2 Brayton cycle), and conducts an in-depth investigation and discussion on the enhancement of its thermodynamic performance. With the aim of achieving the maximum power cycle thermal efficiency and the maximum specific net work, this study examines the variation of the Pareto frontier with respect to the number of intermediate cooling stages and critical operational parameters. The results indicate that the MMCIC sCO 2 Brayton cycle offers significant advantages in improving power cycle thermal efficiency, reducing energy consumption, and mitigating the adverse effects associated with main compressor inlet temperature increasing. Under the investigated operational conditions, the optimal cycle performance is achieved with four intermediate cooling stages, yielding a maximum power cycle thermal efficiency of 67.85% and a maximum specific net work of 0.177 MW·kg −1 . Cycles with two or three intermediate cooling stages also deliver competitive cycle performance, and can be regarded as alternative options. Additionally, increasing the turbine inlet temperature proves more effective for enhancing power cycle thermal efficiency, whereas increasing the turbine inlet pressure can substantially improve the specific net work. This study provides a feasible structural layout approach and research framework to improve the thermodynamic performance of the sCO 2 Brayton cycle, offering a robust theoretical foundation and technical guidance for its implementation in power engineering.

Suggested Citation

  • Lin Xu & Xiaojuan Niu & Wenpeng Hong & Wei Su, 2024. "A Comprehensive Multi-Objective Optimization Study on the Thermodynamic Performance of a Supercritical CO 2 Brayton Cycle Incorporating Multi-Stage Main Compressor Intermediate Cooling," Energies, MDPI, vol. 17(24), pages 1-20, December.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6372-:d:1546804
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/24/6372/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/24/6372/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dandan Xu & Yuting Liu, 2024. "The Impact of Environmental Information Disclosure in the “Carbon Trading Pilot” Project on the Financial Performance of Listed Enterprises in China," Sustainability, MDPI, vol. 16(19), pages 1-25, September.
    2. Antonio Jesús Subires & Antonio Rovira & Marta Muñoz, 2024. "Proposal and Study of a Pumped Thermal Energy Storage to Improve the Economic Results of a Concentrated Solar Power That Works with a Hybrid Rankine–Brayton Propane Cycle," Energies, MDPI, vol. 17(9), pages 1-31, April.
    3. Meina Shen & Runkun Cheng & Da Liu, 2024. "Optimal Bidding Strategies for Wind-Thermal Power Generation Rights Trading: A Game-Theoretic Approach Integrating Carbon Trading and Green Certificate Trading," Sustainability, MDPI, vol. 16(16), pages 1-15, August.
    4. Iverson, Brian D. & Conboy, Thomas M. & Pasch, James J. & Kruizenga, Alan M., 2013. "Supercritical CO2 Brayton cycles for solar-thermal energy," Applied Energy, Elsevier, vol. 111(C), pages 957-970.
    5. Alsawy, Tariq & Elsayed, Mohamed L. & Mohammed, Ramy H. & Mesalhy, Osama, 2024. "Accuracy assessment of the turbomachinery performance maps correction models used in dynamic characteristics of supercritical CO2 Brayton power cycle," Energy, Elsevier, vol. 309(C).
    6. Al-Sulaiman, Fahad A. & Atif, Maimoon, 2015. "Performance comparison of different supercritical carbon dioxide Brayton cycles integrated with a solar power tower," Energy, Elsevier, vol. 82(C), pages 61-71.
    7. Vignarooban, K. & Xu, Xinhai & Arvay, A. & Hsu, K. & Kannan, A.M., 2015. "Heat transfer fluids for concentrating solar power systems – A review," Applied Energy, Elsevier, vol. 146(C), pages 383-396.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luu, Minh Tri & Milani, Dia & McNaughton, Robbie & Abbas, Ali, 2017. "Dynamic modelling and start-up operation of a solar-assisted recompression supercritical CO2 Brayton power cycle," Applied Energy, Elsevier, vol. 199(C), pages 247-263.
    2. Wang, Xiaohe & Liu, Qibin & Bai, Zhang & Lei, Jing & Jin, Hongguang, 2018. "Thermodynamic investigations of the supercritical CO2 system with solar energy and biomass," Applied Energy, Elsevier, vol. 227(C), pages 108-118.
    3. Wang, Kun & He, Ya-Ling & Zhu, Han-Hui, 2017. "Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: A review and a comprehensive comparison of different cycle layouts," Applied Energy, Elsevier, vol. 195(C), pages 819-836.
    4. Ephraim Bonah Agyekum & Tomiwa Sunday Adebayo & Festus Victor Bekun & Nallapaneni Manoj Kumar & Manoj Kumar Panjwani, 2021. "Effect of Two Different Heat Transfer Fluids on the Performance of Solar Tower CSP by Comparing Recompression Supercritical CO 2 and Rankine Power Cycles, China," Energies, MDPI, vol. 14(12), pages 1-19, June.
    5. Al-Sulaiman, F.A., 2016. "On the auxiliary boiler sizing assessment for solar driven supercritical CO2 double recompression Brayton cycles," Applied Energy, Elsevier, vol. 183(C), pages 408-418.
    6. Wang, Xurong & Dai, Yiping, 2016. "Exergoeconomic analysis of utilizing the transcritical CO2 cycle and the ORC for a recompression supercritical CO2 cycle waste heat recovery: A comparative study," Applied Energy, Elsevier, vol. 170(C), pages 193-207.
    7. Ehsan, M. Monjurul & Guan, Zhiqiang & Gurgenci, Hal & Klimenko, Alexander, 2020. "Feasibility of dry cooling in supercritical CO2 power cycle in concentrated solar power application: Review and a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    8. Zhao, Yu & Chang, Zhiyuan & Zhao, Yuanyang & Yang, Qichao & Liu, Guangbin & Li, Liansheng, 2023. "Performance comparison of three supercritical CO2 solar thermal power systems with compressed fluid and molten salt energy storage," Energy, Elsevier, vol. 282(C).
    9. Luu, Minh Tri & Milani, Dia & McNaughton, Robbie & Abbas, Ali, 2017. "Analysis for flexible operation of supercritical CO2 Brayton cycle integrated with solar thermal systems," Energy, Elsevier, vol. 124(C), pages 752-771.
    10. Wang, Di & Han, Xinrui & Li, Haoyu & Li, Xiaoli, 2023. "Dynamic simulation and parameter analysis of solar-coal hybrid power plant based on the supercritical CO2 Brayton cycle," Energy, Elsevier, vol. 272(C).
    11. Khanmohammadi, Shoaib & Kizilkan, Onder & Ahmed, Faraedoon Waly, 2020. "Tri-objective optimization of a hybrid solar-assisted power-refrigeration system working with supercritical carbon dioxide," Renewable Energy, Elsevier, vol. 156(C), pages 1348-1360.
    12. Guccione, Salvatore & Guedez, Rafael, 2023. "Techno-economic optimization of molten salt based CSP plants through integration of supercritical CO2 cycles and hybridization with PV and electric heaters," Energy, Elsevier, vol. 283(C).
    13. Rovira, Antonio & Muñoz, Marta & Sánchez, Consuelo & Martínez-Val, José María, 2015. "Proposal and study of a balanced hybrid Rankine–Brayton cycle for low-to-moderate temperature solar power plants," Energy, Elsevier, vol. 89(C), pages 305-317.
    14. Ma, Yuegeng & Liu, Ming & Yan, Junjie & Liu, Jiping, 2017. "Thermodynamic study of main compression intercooling effects on supercritical CO2 recompression Brayton cycle," Energy, Elsevier, vol. 140(P1), pages 746-756.
    15. Battisti, Felipe G. & Cardemil, José M. & da Silva, Alexandre K., 2016. "A multivariable optimization of a Brayton power cycle operating with CO2 as working fluid," Energy, Elsevier, vol. 112(C), pages 908-916.
    16. Imponenti, Luca & Albrecht, Kevin J. & Kharait, Rounak & Sanders, Michael D. & Jackson, Gregory S., 2018. "Redox cycles with doped calcium manganites for thermochemical energy storage to 1000 °C," Applied Energy, Elsevier, vol. 230(C), pages 1-18.
    17. Xinyu Miao & Haochun Zhang & Qi Wang & Wenbo Sun & Yan Xia, 2022. "Thermodynamic, Exergoeconomic and Multi-Objective Analyses of Supercritical N 2 O-He Recompression Brayton Cycle for a Nuclear Spacecraft Application," Energies, MDPI, vol. 15(21), pages 1-31, November.
    18. Miguel Ángel Reyes-Belmonte, 2020. "A Bibliometric Study on Integrated Solar Combined Cycles (ISCC), Trends and Future Based on Data Analytics Tools," Sustainability, MDPI, vol. 12(19), pages 1-29, October.
    19. Atif, Maimoon. & Al-Sulaiman, Fahad A., 2017. "Energy and exergy analyses of solar tower power plant driven supercritical carbon dioxide recompression cycles for six different locations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 153-167.
    20. Ma, Yuegeng & Zhang, Xuwei & Liu, Ming & Yan, Junjie & Liu, Jiping, 2018. "Proposal and assessment of a novel supercritical CO2 Brayton cycle integrated with LiBr absorption chiller for concentrated solar power applications," Energy, Elsevier, vol. 148(C), pages 839-854.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6372-:d:1546804. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.