IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i24p6303-d1543317.html
   My bibliography  Save this article

Cooling of Air in Outdoor Areas of Human Habitation

Author

Listed:
  • Ewelina Barnat

    (The Faculty of Civil and Environmental Engineering and Architecture, Rzeszow University of Technology, Powstancow Warszawy Street 12, 35-959 Rzeszow, Poland)

  • Robert Sekret

    (Faculty of Infrastructure and Environment, Czestochowa University of Technology, J.H. Dabrowskiego Street 69, 42-201 Czestochowa, Poland)

  • Bożena Babiarz

    (The Faculty of Civil and Environmental Engineering and Architecture, Rzeszow University of Technology, Powstancow Warszawy Street 12, 35-959 Rzeszow, Poland)

Abstract

This paper deals with the issue of air cooling in outdoor areas of human habitation. An analysis of air parameters during the summer season was carried out to determine the thermal comfort zone for a part of the northern platform of the local station in Rzeszow (Poland). The cooling capacity required for thermal comfort was calculated using outdoor air parameters and heat gains in the vicinity of the research object. Ten potential air-cooling systems were proposed for the outdoor zones. The systems differed in terms of cooling equipment, primary energy source, cooling medium, and recipients. They were divided into three categories: compressor, adsorption, and evaporative cooling. The electricity yield of the existing photovoltaic installation at the research facility was evaluated to identify potential synergies between the cooling demand and solar energy. An analysis assessed the energy, economic, and environmental impact of each proposed option. The best option for cooling the outdoor areas was found to be an evaporative cooling system with a PV system. Solar radiation can be effectively used for cooling outdoor zones in Poland in the summer. The optimal solution for the research facility is an evaporative cooling system based on direct evaporation combined with a photovoltaic system. The subject matter covered can be used as an effective tool for the optimal selection of outdoor air-cooling systems to ensure the thermal comfort of the occupants.

Suggested Citation

  • Ewelina Barnat & Robert Sekret & Bożena Babiarz, 2024. "Cooling of Air in Outdoor Areas of Human Habitation," Energies, MDPI, vol. 17(24), pages 1-28, December.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6303-:d:1543317
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/24/6303/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/24/6303/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuzhou Zhu & Karen M. Kensek, 2024. "MITIGATING THE URBAN HEAT ISLAND EFFECT: The Thermal Performance of Shade-Tree Planting in Downtown Los Angeles," Sustainability, MDPI, vol. 16(20), pages 1-36, October.
    2. Karol Bandurski & Hanna Bandurska & Ewa Kazimierczak-Grygiel & Halina Koczyk, 2020. "The Green Structure for Outdoor Places in Dry, Hot Regions and Seasons—Providing Human Thermal Comfort in Sustainable Cities," Energies, MDPI, vol. 13(11), pages 1-24, June.
    3. Bożena Babiarz & Dorota Anna Krawczyk & Alicja Siuta-Olcha & Candida Duarte Manuel & Artur Jaworski & Ewelina Barnat & Tomasz Cholewa & Beata Sadowska & Martyna Bocian & Maciej Gnieciak & Anna Werner-, 2024. "Energy Efficiency in Buildings: Toward Climate Neutrality," Energies, MDPI, vol. 17(18), pages 1-38, September.
    4. Yang, Xiaoshan & Peng, Lilliana L.H. & Jiang, Zhidian & Chen, Yuan & Yao, Lingye & He, Yunfei & Xu, Tianjing, 2020. "Impact of urban heat island on energy demand in buildings: Local climate zones in Nanjing," Applied Energy, Elsevier, vol. 260(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinhui Ma & Haijing Huang & Mingxi Peng & Yihuan Zhou, 2024. "Investigating the Heterogeneity Effects of Urban Morphology on Building Energy Consumption from a Spatio-Temporal Perspective Using Old Residential Buildings on a University Campus," Land, MDPI, vol. 13(10), pages 1-24, October.
    2. Zhikun Ding & Rongsheng Liu & Zongjie Li & Cheng Fan, 2020. "A Thematic Network-Based Methodology for the Research Trend Identification in Building Energy Management," Energies, MDPI, vol. 13(18), pages 1-33, September.
    3. Gabriele Battista & Emanuele de Lieto Vollaro & Andrea Vallati & Roberto de Lieto Vollaro, 2023. "Technical–Financial Feasibility Study of a Micro-Cogeneration System in the Buildings in Italy," Energies, MDPI, vol. 16(14), pages 1-15, July.
    4. Meng, Fanchao & Zhang, Lei & Ren, Guoyu & Zhang, Ruixue, 2023. "Impacts of UHI on variations in cooling loads in buildings during heatwaves: A case study of Beijing and Tianjin, China," Energy, Elsevier, vol. 273(C).
    5. Gabriele Battista & Emanuele de Lieto Vollaro & Luca Evangelisti & Roberto de Lieto Vollaro, 2022. "Urban Overheating Mitigation Strategies Opportunities: A Case Study of a Square in Rome (Italy)," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    6. Long Pei & Patrick Schalbart & Bruno Peuportier, 2023. "Quantitative Evaluation of the Effects of Heat Island on Building Energy Simulation: A Case Study in Wuhan, China," Energies, MDPI, vol. 16(7), pages 1-23, March.
    7. Jia, Qi & Zhu, Yian & Zhang, Tiantian & Li, Shuling & Han, Dongliang & Feng, Qi & Tan, Yufei & Li, Baochang, 2024. "Urban microclimate differences in continental zone of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    8. Arkadiusz Urzędowski & Andrzej Sachajdak & Arkadiusz Syta & Jacek Zaburko, 2024. "CFD and Statistical Analysis of the Impact of Surface Physical Parameters on the Thermal Resistance of Layered Partitions in ETICS Systems," Energies, MDPI, vol. 18(1), pages 1-19, December.
    9. Peng, Lilliana L.H. & Jiang, Zhidian & Yang, Xiaoshan & Wang, Qingqing & He, Yunfei & Chen, Sophia Shuang, 2020. "Energy savings of block-scale facade greening for different urban forms," Applied Energy, Elsevier, vol. 279(C).
    10. Kristian Fabbri & Ernesto Antonini & Lia Marchi, 2023. "Sun-Shading Sails in Courtyards: An Italian Case Study with RayMan," Sustainability, MDPI, vol. 15(17), pages 1-15, August.
    11. Yaping Chen & Chun Wang & Yinze Hu, 2024. "Energy Consumption and Outdoor Thermal Comfort Characteristics in High-Density Urban Areas Based on Local Climate Zone—A Case Study of Changsha, China," Sustainability, MDPI, vol. 16(16), pages 1-35, August.
    12. Du, Ruiqing & Liu, Chun-Ho & Li, Xian-Xiang & Lin, Chuan-Yao, 2023. "Effect of local climate zone (LCZ) and building category (BC) classification on the simulation of urban climate and air-conditioning load in Hong Kong," Energy, Elsevier, vol. 271(C).
    13. Zhe Li & Feng Wu & Huiqiang Ma & Zhanjun Xu & Shaohua Wang, 2022. "Spatiotemporal Evolution and Relationship between Night Time Light and Land Surface Temperature: A Case Study of Beijing, China," Land, MDPI, vol. 11(4), pages 1-24, April.
    14. Kousis, I. & Manni, M. & Pisello, A.L., 2022. "Environmental mobile monitoring of urban microclimates: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    15. Hereher, Mohamed & El Kenawy, Ahmed M., 2020. "Exploring the potential of solar, tidal, and wind energy resources in Oman using an integrated climatic-socioeconomic approach," Renewable Energy, Elsevier, vol. 161(C), pages 662-675.
    16. Wang, Yihang & Wang, Zhi-Hua & Rahmatollahi, Negar & Hou, Haoran, 2024. "The impact of roof systems on cooling and building energy efficiency," Applied Energy, Elsevier, vol. 376(PB).
    17. Ma, Minda & Ma, Xin & Cai, Wei & Cai, Weiguang, 2020. "Low carbon roadmap of residential building sector in China: Historical mitigation and prospective peak," Applied Energy, Elsevier, vol. 273(C).
    18. Hong, Tianzhen & Ferrando, Martina & Luo, Xuan & Causone, Francesco, 2020. "Modeling and analysis of heat emissions from buildings to ambient air," Applied Energy, Elsevier, vol. 277(C).
    19. Yanxia Li & Xinkai Zhang & Sijie Zhu & Xiaoyu Wang & Yongdong Lu & Sihong Du & Xing Shi, 2020. "Transformation of Urban Surfaces and Heat Islands in Nanjing during 1984–2018," Sustainability, MDPI, vol. 12(16), pages 1-19, August.
    20. Natalia Przesmycka & Bartłomiej Kwiatkowski & Małgorzata Kozak, 2022. "The Thermal Comfort Problem in Public Space during the Climate Change Era Based on the Case Study of Selected Area in Lublin City in Poland," Energies, MDPI, vol. 15(18), pages 1-26, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6303-:d:1543317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.