IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i5p1053-d1596803.html
   My bibliography  Save this article

Analysis of the Characteristics of Heat Island Intensity Based on Local Climate Zones in the Transitional Season of Shenyang

Author

Listed:
  • Tianyu Xi

    (JangHo Architecture College, Northeastern University, Shenyang 110169, China)

  • Jin Li

    (JangHo Architecture College, Northeastern University, Shenyang 110169, China)

  • Nuannuan Yang

    (JangHo Architecture College, Northeastern University, Shenyang 110169, China)

  • Xinyu Liu

    (JangHo Architecture College, Northeastern University, Shenyang 110169, China)

  • Fei Guo

    (School of Architecture and Fine Art, Dalian University of Technology, Dalian 116023, China)

Abstract

The data derived from Local Climate Zone (LCZ) field measurements can contribute to the construction of regional climate datasets with urban heat island (UHI) effects and accurately present urban heat island intensity (UHII) characteristics in different areas, thereby improving the accuracy of building energy consumption simulations. This study focuses on Shenyang, a severe cold-region city, as the research area. By mapping the LCZs in the central city of Shenyang and selecting eight different types of LCZ plots for field temperature measurement, the UHI effect of various LCZs in Shenyang was analyzed. Air temperature and UHII were used to evaluate the UHII characteristics of LCZs under typical meteorological conditions. Additionally, this study investigated the temperature dynamics and heating/cooling rates of each LCZ under typical meteorological days. The results reveal significant differences in UHII characteristics among LCZ types, closely related to their surface structure and land cover characteristics. These findings further validate the effectiveness of the LCZ classification method in severe cold regions. The data obtained in this study can be used as high-precision climate model parameters for urban energy consumption models and building energy efficiency models, thus making simulation results more consistent with local characteristics and enabling more accurate energy consumption predictions.

Suggested Citation

  • Tianyu Xi & Jin Li & Nuannuan Yang & Xinyu Liu & Fei Guo, 2025. "Analysis of the Characteristics of Heat Island Intensity Based on Local Climate Zones in the Transitional Season of Shenyang," Energies, MDPI, vol. 18(5), pages 1-23, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1053-:d:1596803
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/5/1053/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/5/1053/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Du, Ruiqing & Liu, Chun-Ho & Li, Xian-Xiang & Lin, Chuan-Yao, 2023. "Effect of local climate zone (LCZ) and building category (BC) classification on the simulation of urban climate and air-conditioning load in Hong Kong," Energy, Elsevier, vol. 271(C).
    2. Hirano, Y. & Fujita, T., 2012. "Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo," Energy, Elsevier, vol. 37(1), pages 371-383.
    3. Li, Xiaoma & Zhou, Yuyu & Yu, Sha & Jia, Gensuo & Li, Huidong & Li, Wenliang, 2019. "Urban heat island impacts on building energy consumption: A review of approaches and findings," Energy, Elsevier, vol. 174(C), pages 407-419.
    4. Shi, Luyang & Luo, Zhiwen & Matthews, Wendy & Wang, Zixuan & Li, Yuguo & Liu, Jing, 2019. "Impacts of urban microclimate on summertime sensible and latent energy demand for cooling in residential buildings of Hong Kong," Energy, Elsevier, vol. 189(C).
    5. Kit Benjamin & Zhiwen Luo & Xiaoxue Wang, 2021. "Crowdsourcing Urban Air Temperature Data for Estimating Urban Heat Island and Building Heating/Cooling Load in London," Energies, MDPI, vol. 14(16), pages 1-26, August.
    6. Yang, Xiaoshan & Peng, Lilliana L.H. & Jiang, Zhidian & Chen, Yuan & Yao, Lingye & He, Yunfei & Xu, Tianjing, 2020. "Impact of urban heat island on energy demand in buildings: Local climate zones in Nanjing," Applied Energy, Elsevier, vol. 260(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Xiaoyu & Zhang, Hanwen & Liu, Lin & Huang, Jiahao & Liu, Liru & Liu, Jing, 2024. "Establishment of LCZ-based urban building energy consumption dataset in hot and humid subtropical regions through a bottom-up method," Applied Energy, Elsevier, vol. 368(C).
    2. Yang, Xiaoshan & Yao, Lingye & Peng, Lilliana L.H., 2024. "Impacts of urban air temperature and humidity on building cooling and heating energy demand in 15 cities of eastern China," Energy, Elsevier, vol. 288(C).
    3. Meng, Fanchao & Zhang, Lei & Ren, Guoyu & Zhang, Ruixue, 2023. "Impacts of UHI on variations in cooling loads in buildings during heatwaves: A case study of Beijing and Tianjin, China," Energy, Elsevier, vol. 273(C).
    4. Gabriele Battista & Emanuele de Lieto Vollaro & Luca Evangelisti & Roberto de Lieto Vollaro, 2022. "Urban Overheating Mitigation Strategies Opportunities: A Case Study of a Square in Rome (Italy)," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    5. Yaping Chen & Chun Wang & Yinze Hu, 2024. "Energy Consumption and Outdoor Thermal Comfort Characteristics in High-Density Urban Areas Based on Local Climate Zone—A Case Study of Changsha, China," Sustainability, MDPI, vol. 16(16), pages 1-35, August.
    6. Baniassadi, Amir & Heusinger, Jannik & Gonzalez, Pablo Izaga & Weber, Stephan & Samuelson, Holly W., 2022. "Co-benefits of energy efficiency in residential buildings," Energy, Elsevier, vol. 238(PB).
    7. Jiao Xue & Ruoyu You & Wei Liu & Chun Chen & Dayi Lai, 2020. "Applications of Local Climate Zone Classification Scheme to Improve Urban Sustainability: A Bibliometric Review," Sustainability, MDPI, vol. 12(19), pages 1-14, September.
    8. Deng, Ji-Yu & Wong, Nyuk Hien & Zheng, Xin, 2021. "Effects of street geometries on building cooling demand in Nanjing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    9. Zhikun Ding & Rongsheng Liu & Zongjie Li & Cheng Fan, 2020. "A Thematic Network-Based Methodology for the Research Trend Identification in Building Energy Management," Energies, MDPI, vol. 13(18), pages 1-33, September.
    10. Gabriele Battista & Emanuele de Lieto Vollaro & Andrea Vallati & Roberto de Lieto Vollaro, 2023. "Technical–Financial Feasibility Study of a Micro-Cogeneration System in the Buildings in Italy," Energies, MDPI, vol. 16(14), pages 1-15, July.
    11. Samuelson, Holly W. & Baniassadi, Amir & Gonzalez, Pablo Izaga, 2020. "Beyond energy savings: Investigating the co-benefits of heat resilient architecture," Energy, Elsevier, vol. 204(C).
    12. Long Pei & Patrick Schalbart & Bruno Peuportier, 2023. "Quantitative Evaluation of the Effects of Heat Island on Building Energy Simulation: A Case Study in Wuhan, China," Energies, MDPI, vol. 16(7), pages 1-23, March.
    13. Jia, Qi & Zhu, Yian & Zhang, Tiantian & Li, Shuling & Han, Dongliang & Feng, Qi & Tan, Yufei & Li, Baochang, 2024. "Urban microclimate differences in continental zone of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    14. Kit Benjamin & Zhiwen Luo & Xiaoxue Wang, 2021. "Crowdsourcing Urban Air Temperature Data for Estimating Urban Heat Island and Building Heating/Cooling Load in London," Energies, MDPI, vol. 14(16), pages 1-26, August.
    15. Wang, Yihang & Wang, Zhi-Hua & Rahmatollahi, Negar & Hou, Haoran, 2024. "The impact of roof systems on cooling and building energy efficiency," Applied Energy, Elsevier, vol. 376(PB).
    16. Georgia Spyrou & Byron Ioannou & Manolis Souliotis & Andreas L. Savvides & Paris A. Fokaides, 2023. "The Adaptability of Cities to Climate Change: Evidence from Cities’ Redesign towards Mitigating the UHI Effect," Sustainability, MDPI, vol. 15(7), pages 1-21, April.
    17. SangHyeok Lee & Donghyun Kim, 2022. "Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    18. Sánchez-Guevara Sánchez, Carmen & Sanz Fernández, Ana & Núñez Peiró, Miguel & Gómez Muñoz, Gloria, 2020. "Energy poverty in Madrid: Data exploitation at the city and district level," Energy Policy, Elsevier, vol. 144(C).
    19. Coyne, Bryan & Denny, Eleanor, 2021. "Retrofit effectiveness: Evidence from a nationwide residential energy efficiency programme," Energy Policy, Elsevier, vol. 159(C).
    20. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2018. "Impact of urban microclimate on summertime building cooling demand: A parametric analysis for Antwerp, Belgium," Applied Energy, Elsevier, vol. 228(C), pages 852-872.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1053-:d:1596803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.