IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i18p4680-d1481744.html
   My bibliography  Save this article

Energy Efficiency in Buildings: Toward Climate Neutrality

Author

Listed:
  • Bożena Babiarz

    (The Faculty of Civil and Environmental Engineering and Architecture, Rzeszow University of Technology, Powstancow Warszawy Street 12, 35-959 Rzeszow, Poland)

  • Dorota Anna Krawczyk

    (Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska Street 45A, 15-351 Bialystok, Poland)

  • Alicja Siuta-Olcha

    (Faculty of Environmental Engineering, Lublin University of Technology, Nadbystrzycka 40B, 20-618 Lublin, Poland)

  • Candida Duarte Manuel

    (Lusófona University, BioRG-Bioengineering and Sustainability Research Group, 4000-098 Porto, Portugal)

  • Artur Jaworski

    (Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, Powstancow Warszawy Street 8, 35-959 Rzeszow, Poland)

  • Ewelina Barnat

    (The Faculty of Civil and Environmental Engineering and Architecture, Rzeszow University of Technology, Powstancow Warszawy Street 12, 35-959 Rzeszow, Poland)

  • Tomasz Cholewa

    (Faculty of Environmental Engineering, Lublin University of Technology, Nadbystrzycka 40B, 20-618 Lublin, Poland)

  • Beata Sadowska

    (Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska Street 45A, 15-351 Bialystok, Poland)

  • Martyna Bocian

    (Faculty of Environmental Engineering, Lublin University of Technology, Nadbystrzycka 40B, 20-618 Lublin, Poland)

  • Maciej Gnieciak

    (Faculty of Environmental Engineering, Lublin University of Technology, Nadbystrzycka 40B, 20-618 Lublin, Poland)

  • Anna Werner-Juszczuk

    (Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska Street 45A, 15-351 Bialystok, Poland)

  • Maciej Kłopotowski

    (Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska Street 45A, 15-351 Bialystok, Poland)

  • Dorota Gawryluk

    (Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska Street 45A, 15-351 Bialystok, Poland)

  • Robert Stachniewicz

    (Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska Street 45A, 15-351 Bialystok, Poland)

  • Adam Święcicki

    (Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska Street 45A, 15-351 Bialystok, Poland)

  • Piotr Rynkowski

    (Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska Street 45A, 15-351 Bialystok, Poland)

Abstract

The pursuit of climate neutrality requires global systemic actions involving the use of solutions aimed at reducing emissions. Changes must be introduced in all sectors affecting climate change, namely power engineering and district heating, construction, transport, and industry, as well as agriculture and forestry. Analyzing the structure of final energy consumption in the EU by sector, it can be stated that households account for 27% of the total energy consumption. Comprehensive actions are needed to increase the energy efficiency of buildings. The aim of this paper was to indicate aspects of improving energy efficiency in buildings and their equipment, taking into account the striving for climate neutrality. Analyzed possibilities and conditions of using various solutions of energy-efficient systems aimed at increasing energy resilience and security and preventing environmental degradation. Particular attention was paid to construction and material solutions, as well as installation solutions, which increased the accumulation and energy efficiency of the building. These activities are closely related to the conditions and dynamics of the heat exchange process in the applied solutions and are also related to the factors influencing thermal comfort and energy consumption in buildings. Due to the growing popularity of modern information technologies and artificial intelligence in energy management in recent years, this article reviews the latest research in this area. One of the directions of future research indicated by scientists is autonomous building control in real time, adapting to the momentary needs of users. The analysis of the possibilities of using modern energy efficiency solutions in buildings conducted in this work may be useful for optimizing heat and energy management models and models of society’s consumption as an element of energy transformation towards climate neutrality and counteracting the deepening of energy poverty.

Suggested Citation

  • Bożena Babiarz & Dorota Anna Krawczyk & Alicja Siuta-Olcha & Candida Duarte Manuel & Artur Jaworski & Ewelina Barnat & Tomasz Cholewa & Beata Sadowska & Martyna Bocian & Maciej Gnieciak & Anna Werner-, 2024. "Energy Efficiency in Buildings: Toward Climate Neutrality," Energies, MDPI, vol. 17(18), pages 1-38, September.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:18:p:4680-:d:1481744
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/18/4680/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/18/4680/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Love, Jenny & Smith, Andrew Z.P. & Watson, Stephen & Oikonomou, Eleni & Summerfield, Alex & Gleeson, Colin & Biddulph, Phillip & Chiu, Lai Fong & Wingfield, Jez & Martin, Chris & Stone, Andy & Lowe, R, 2017. "The addition of heat pump electricity load profiles to GB electricity demand: Evidence from a heat pump field trial," Applied Energy, Elsevier, vol. 204(C), pages 332-342.
    2. Gadd, Henrik & Werner, Sven, 2013. "Daily heat load variations in Swedish district heating systems," Applied Energy, Elsevier, vol. 106(C), pages 47-55.
    3. Jakub Sokołowski & Jan Frankowski & Piotr Lewandowski, 2024. "Energy poverty, housing conditions, and self-assessed health: evidence from Poland," Housing Studies, Taylor & Francis Journals, vol. 39(9), pages 2325-2354, October.
    4. Du, Kun & Calautit, John & Wang, Zhonghua & Wu, Yupeng & Liu, Hao, 2018. "A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges," Applied Energy, Elsevier, vol. 220(C), pages 242-273.
    5. Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    6. Zeyen, Elisabeth & Hagenmeyer, Veit & Brown, Tom, 2021. "Mitigating heat demand peaks in buildings in a highly renewable European energy system," Energy, Elsevier, vol. 231(C).
    7. De Rosa, Mattia & Bianco, Vincenzo & Scarpa, Federico & Tagliafico, Luca A., 2014. "Heating and cooling building energy demand evaluation; a simplified model and a modified degree days approach," Applied Energy, Elsevier, vol. 128(C), pages 217-229.
    8. Amanowicz, Łukasz, 2018. "Influence of geometrical parameters on the flow characteristics of multi-pipe earth-to-air heat exchangers – experimental and CFD investigations," Applied Energy, Elsevier, vol. 226(C), pages 849-861.
    9. Yijing Wang & Rong Wang & Katsumasa Tanaka & Philippe Ciais & Josep Penuelas & Yves Balkanski & Jordi Sardans & Didier Hauglustaine & Wang Liu & Xiaofan Xing & Jiarong Li & Siqing Xu & Yuankang Xiong , 2023. "Accelerating the energy transition towards photovoltaic and wind in China," Nature, Nature, vol. 619(7971), pages 761-767, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luca Brunelli & Emiliano Borri & Anna Laura Pisello & Andrea Nicolini & Carles Mateu & Luisa F. Cabeza, 2024. "Thermal Energy Storage in Energy Communities: A Perspective Overview through a Bibliometric Analysis," Sustainability, MDPI, vol. 16(14), pages 1-27, July.
    2. Hirvijoki, Eero & Hirvonen, Janne, 2022. "The potential of intermediate-to-deep geothermal boreholes for seasonal storage of district heat," Renewable Energy, Elsevier, vol. 198(C), pages 825-832.
    3. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
    4. Capone, Martina & Guelpa, Elisa & Mancò, Giulia & Verda, Vittorio, 2021. "Integration of storage and thermal demand response to unlock flexibility in district multi-energy systems," Energy, Elsevier, vol. 237(C).
    5. Guelpa, Elisa & Verda, Vittorio, 2021. "Demand response and other demand side management techniques for district heating: A review," Energy, Elsevier, vol. 219(C).
    6. Bergsteinsson, Hjörleifur G. & Sørensen, Mikkel Lindstrøm & Møller, Jan Kloppenborg & Madsen, Henrik, 2023. "Heat load forecasting using adaptive spatial hierarchies," Applied Energy, Elsevier, vol. 350(C).
    7. Jebamalai, Joseph Maria & Marlein, Kurt & Laverge, Jelle, 2020. "Influence of centralized and distributed thermal energy storage on district heating network design," Energy, Elsevier, vol. 202(C).
    8. Østergaard, Dorte Skaarup & Smith, Kevin Michael & Tunzi, Michele & Svendsen, Svend, 2022. "Low-temperature operation of heating systems to enable 4th generation district heating: A review," Energy, Elsevier, vol. 248(C).
    9. Halloran, Claire & Lizana, Jesus & Fele, Filiberto & McCulloch, Malcolm, 2024. "Data-based, high spatiotemporal resolution heat pump demand for power system planning," Applied Energy, Elsevier, vol. 355(C).
    10. Guelpa, Elisa, 2021. "Impact of thermal masses on the peak load in district heating systems," Energy, Elsevier, vol. 214(C).
    11. Andrea Menapace & Simone Santopietro & Rudy Gargano & Maurizio Righetti, 2021. "Stochastic Generation of District Heat Load," Energies, MDPI, vol. 14(17), pages 1-17, August.
    12. Peacock, Malcolm & Fragaki, Aikaterini & Matuszewski, Bogdan J, 2023. "The impact of heat electrification on the seasonal and interannual electricity demand of Great Britain," Applied Energy, Elsevier, vol. 337(C).
    13. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    14. Sihvonen, Ville & Ollila, Iisa & Jaanto, Jasmin & Grönman, Aki & Honkapuro, Samuli & Riikonen, Juhani & Price, Alisdair, 2024. "Role of power-to-heat and thermal energy storage in decarbonization of district heating," Energy, Elsevier, vol. 305(C).
    15. He, Zhaoyu & Guo, Weimin & Zhang, Peng, 2022. "Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    16. Pedro Gomes da Cruz Filho & Danielle Devequi Gomes Nunes & Hayna Malta Santos & Alex Álisson Bandeira Santos & Bruna Aparecida Souza Machado, 2023. "From Patents to Progress: Genetic Algorithms in Harmonic Distortion Monitoring Technology," Energies, MDPI, vol. 16(24), pages 1-21, December.
    17. Helistö, Niina & Kiviluoma, Juha & Morales-España, Germán & O’Dwyer, Ciara, 2021. "Impact of operational details and temporal representations on investment planning in energy systems dominated by wind and solar," Applied Energy, Elsevier, vol. 290(C).
    18. Agnieszka Malec & Tomasz Cholewa & Alicja Siuta-Olcha, 2021. "Influence of Cold Water Inlets and Obstacles on the Energy Efficiency of the Hot Water Production Process in a Hot Water Storage Tank," Energies, MDPI, vol. 14(20), pages 1-26, October.
    19. A. J. Jin & C. Li & J. Su & J. Tan, 2022. "Fundamental Studies of Smart Distributed Energy Resources along with Energy Blockchain," Energies, MDPI, vol. 15(21), pages 1-12, October.
    20. Omar, M.N. & Samak, A.A. & Keshek, M.H. & Elsisi, S.F., 2020. "Simulation and validation model for using the energy produced from broiler litter waste in their house and its requirement of energy," Renewable Energy, Elsevier, vol. 159(C), pages 920-928.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:18:p:4680-:d:1481744. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.