IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i16p6521-d398119.html
   My bibliography  Save this article

Transformation of Urban Surfaces and Heat Islands in Nanjing during 1984–2018

Author

Listed:
  • Yanxia Li

    (School of Architecture, Southeast University, Nanjing 210096, China
    Key Laboratory of Urban and Architectural Heritage Conservation, Ministry of Education, Nanjing 210096, China)

  • Xinkai Zhang

    (College of Architecture and Urban Planning, Tongji University, Shanghai 200092, China
    Key Laboratory of Ecology and Energy-Saving Study of Dense Habitat (Tongji University), Ministry of Education, Shanghai 200092, China)

  • Sijie Zhu

    (School of Architecture, Southeast University, Nanjing 210096, China
    Key Laboratory of Urban and Architectural Heritage Conservation, Ministry of Education, Nanjing 210096, China)

  • Xiaoyu Wang

    (School of Architecture, Southeast University, Nanjing 210096, China
    Key Laboratory of Urban and Architectural Heritage Conservation, Ministry of Education, Nanjing 210096, China)

  • Yongdong Lu

    (School of Architecture, Southeast University, Nanjing 210096, China
    Key Laboratory of Urban and Architectural Heritage Conservation, Ministry of Education, Nanjing 210096, China)

  • Sihong Du

    (College of Architecture and Urban Planning, Tongji University, Shanghai 200092, China
    Key Laboratory of Ecology and Energy-Saving Study of Dense Habitat (Tongji University), Ministry of Education, Shanghai 200092, China)

  • Xing Shi

    (School of Architecture, Southeast University, Nanjing 210096, China
    College of Architecture and Urban Planning, Tongji University, Shanghai 200092, China
    Key Laboratory of Ecology and Energy-Saving Study of Dense Habitat (Tongji University), Ministry of Education, Shanghai 200092, China)

Abstract

One of the many consequences of urbanization is the expansion of cities into rural areas, which leads to the transformation of lands from natural surfaces to developed surfaces. It is widely considered an established fact that urbanization generally increases the heat island effect. The objective of this study is to understand the pattern of urban surface transformation in the city of Nanjing since 1980 and to find, if any, the correlation between such transformation and the urban heat island effect. The supervised classification technique was used to analyze the remote sensing data obtained from Landsat to identify the different kinds of underlying surfaces. Land surface temperatures were calculated using a subset of Landsat data. The correlation between the transformation of underlying surfaces and the heat island effect was established through analytical and statistical approaches. The results clearly show that the proportion of developed surfaces has been steadily rising in Nanjing in the past 30 years and that the urban heat island effect is positively correlated with the expansion of hard pavement and the deterioration of green surfaces and water bodies considering the general trend.

Suggested Citation

  • Yanxia Li & Xinkai Zhang & Sijie Zhu & Xiaoyu Wang & Yongdong Lu & Sihong Du & Xing Shi, 2020. "Transformation of Urban Surfaces and Heat Islands in Nanjing during 1984–2018," Sustainability, MDPI, vol. 12(16), pages 1-19, August.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:16:p:6521-:d:398119
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/16/6521/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/16/6521/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Xiaoshan & Peng, Lilliana L.H. & Jiang, Zhidian & Chen, Yuan & Yao, Lingye & He, Yunfei & Xu, Tianjing, 2020. "Impact of urban heat island on energy demand in buildings: Local climate zones in Nanjing," Applied Energy, Elsevier, vol. 260(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dongling Ma & Qingji Huang & Baoze Liu & Qian Zhang, 2023. "Analysis and Dynamic Evaluation of Eco-Environmental Quality in the Yellow River Delta from 2000 to 2020," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    2. Susca, T. & Zanghirella, F. & Colasuonno, L. & Del Fatto, V., 2022. "Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Kailin Shang & Linfeng Xu & Xuan Liu & Zhengtong Yin & Zhixin Liu & Xiaolu Li & Lirong Yin & Wenfeng Zheng, 2023. "Study of Urban Heat Island Effect in Hangzhou Metropolitan Area Based on SW-TES Algorithm and Image Dichotomous Model," SAGE Open, , vol. 13(4), pages 21582440231, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinhui Ma & Haijing Huang & Mingxi Peng & Yihuan Zhou, 2024. "Investigating the Heterogeneity Effects of Urban Morphology on Building Energy Consumption from a Spatio-Temporal Perspective Using Old Residential Buildings on a University Campus," Land, MDPI, vol. 13(10), pages 1-24, October.
    2. Zhikun Ding & Rongsheng Liu & Zongjie Li & Cheng Fan, 2020. "A Thematic Network-Based Methodology for the Research Trend Identification in Building Energy Management," Energies, MDPI, vol. 13(18), pages 1-33, September.
    3. Gabriele Battista & Emanuele de Lieto Vollaro & Andrea Vallati & Roberto de Lieto Vollaro, 2023. "Technical–Financial Feasibility Study of a Micro-Cogeneration System in the Buildings in Italy," Energies, MDPI, vol. 16(14), pages 1-15, July.
    4. Meng, Fanchao & Zhang, Lei & Ren, Guoyu & Zhang, Ruixue, 2023. "Impacts of UHI on variations in cooling loads in buildings during heatwaves: A case study of Beijing and Tianjin, China," Energy, Elsevier, vol. 273(C).
    5. Gabriele Battista & Emanuele de Lieto Vollaro & Luca Evangelisti & Roberto de Lieto Vollaro, 2022. "Urban Overheating Mitigation Strategies Opportunities: A Case Study of a Square in Rome (Italy)," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    6. Long Pei & Patrick Schalbart & Bruno Peuportier, 2023. "Quantitative Evaluation of the Effects of Heat Island on Building Energy Simulation: A Case Study in Wuhan, China," Energies, MDPI, vol. 16(7), pages 1-23, March.
    7. Jia, Qi & Zhu, Yian & Zhang, Tiantian & Li, Shuling & Han, Dongliang & Feng, Qi & Tan, Yufei & Li, Baochang, 2024. "Urban microclimate differences in continental zone of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    8. Peng, Lilliana L.H. & Jiang, Zhidian & Yang, Xiaoshan & Wang, Qingqing & He, Yunfei & Chen, Sophia Shuang, 2020. "Energy savings of block-scale facade greening for different urban forms," Applied Energy, Elsevier, vol. 279(C).
    9. Yaping Chen & Chun Wang & Yinze Hu, 2024. "Energy Consumption and Outdoor Thermal Comfort Characteristics in High-Density Urban Areas Based on Local Climate Zone—A Case Study of Changsha, China," Sustainability, MDPI, vol. 16(16), pages 1-35, August.
    10. Du, Ruiqing & Liu, Chun-Ho & Li, Xian-Xiang & Lin, Chuan-Yao, 2023. "Effect of local climate zone (LCZ) and building category (BC) classification on the simulation of urban climate and air-conditioning load in Hong Kong," Energy, Elsevier, vol. 271(C).
    11. Zhe Li & Feng Wu & Huiqiang Ma & Zhanjun Xu & Shaohua Wang, 2022. "Spatiotemporal Evolution and Relationship between Night Time Light and Land Surface Temperature: A Case Study of Beijing, China," Land, MDPI, vol. 11(4), pages 1-24, April.
    12. Kousis, I. & Manni, M. & Pisello, A.L., 2022. "Environmental mobile monitoring of urban microclimates: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    13. Hereher, Mohamed & El Kenawy, Ahmed M., 2020. "Exploring the potential of solar, tidal, and wind energy resources in Oman using an integrated climatic-socioeconomic approach," Renewable Energy, Elsevier, vol. 161(C), pages 662-675.
    14. Ma, Minda & Ma, Xin & Cai, Wei & Cai, Weiguang, 2020. "Low carbon roadmap of residential building sector in China: Historical mitigation and prospective peak," Applied Energy, Elsevier, vol. 273(C).
    15. Hong, Tianzhen & Ferrando, Martina & Luo, Xuan & Causone, Francesco, 2020. "Modeling and analysis of heat emissions from buildings to ambient air," Applied Energy, Elsevier, vol. 277(C).
    16. Yang, Xiaoshan & Yao, Lingye & Peng, Lilliana L.H., 2024. "Impacts of urban air temperature and humidity on building cooling and heating energy demand in 15 cities of eastern China," Energy, Elsevier, vol. 288(C).
    17. Xiaoyu Cai & Jun Yang & Yuqing Zhang & Xiangming Xiao & Jianhong (Cecilia) Xia, 2023. "Cooling island effect in urban parks from the perspective of internal park landscape," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-12, December.
    18. Jiao Xue & Ruoyu You & Wei Liu & Chun Chen & Dayi Lai, 2020. "Applications of Local Climate Zone Classification Scheme to Improve Urban Sustainability: A Bibliometric Review," Sustainability, MDPI, vol. 12(19), pages 1-14, September.
    19. Zhuo, Sheng & Zhou, Wenwu & Fang, Ping & Ye, Jianyong & Luo, Haoze & Li, Hejun & Wu, Changzi & Chen, Weifan & Liu, Yue, 2024. "Cost-effective pearlescent pigments with high near-infrared reflectance and outstanding energy-saving ability for mitigating urban heat island effect," Applied Energy, Elsevier, vol. 353(PA).
    20. Deng, Ji-Yu & Wong, Nyuk Hien & Zheng, Xin, 2021. "Effects of street geometries on building cooling demand in Nanjing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:16:p:6521-:d:398119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.