IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p5910-d1528894.html
   My bibliography  Save this article

An Improved Decline Curve Analysis Method via Ensemble Learning for Shale Gas Reservoirs

Author

Listed:
  • Yu Zhou

    (CNPC Chuanqing Drilling Engineering Company Limited, Chengdu 610051, China)

  • Zaixun Gu

    (CNPC Chuanqing Drilling Engineering Company Limited, Chengdu 610051, China)

  • Changyu He

    (CNPC Chuanqing Drilling Engineering Company Limited, Chengdu 610051, China)

  • Junwen Yang

    (Research Institute of Big Data, School of Business Administration, Southwestern University of Finance and Economics, Chengdu 611130, China)

  • Jian Xiong

    (Research Institute of Big Data, School of Business Administration, Southwestern University of Finance and Economics, Chengdu 611130, China)

Abstract

As a clean unconventional energy source, shale gas reservoirs are increasingly important globally. Accurate prediction methods for shale gas production capacity can bring significant economic benefits by reducing construction and operating costs. Decline curve analysis (DCA) is an efficient method that uses mathematical formulas to describe production trends with minimal reliance on geological or engineering parameters. However, traditional DCA models often fail to capture the complex production dynamics of shale gas wells, especially in complex environments. To overcome these limitations, this study proposes an Improved DCA method that integrates multiple base empirical DCA models through ensemble learning. By combining the strengths of individual models, it offers a more robust and accurate prediction framework. We evaluated this method using data from 22 shale gas wells in region L, China, comparing it to six traditional DCA models, including Arps and the Logistic Growth Model (LGM). The results show that the Improved DCA model achieved superior performance—with an mean absolute error (MAE) of 0.0660, an mean squared error (MSE) of 0.0272, and an R 2 value of 0.9882—and exhibited greater stability across various samples and conditions. This method provides a reliable tool for long-term production forecasting and optimization without extensive geological or engineering information.

Suggested Citation

  • Yu Zhou & Zaixun Gu & Changyu He & Junwen Yang & Jian Xiong, 2024. "An Improved Decline Curve Analysis Method via Ensemble Learning for Shale Gas Reservoirs," Energies, MDPI, vol. 17(23), pages 1-19, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5910-:d:1528894
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/5910/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/5910/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Hui & Chen, Li & Qu, Zhiguo & Yin, Ying & Kang, Qinjun & Yu, Bo & Tao, Wen-Quan, 2020. "Modeling of multi-scale transport phenomena in shale gas production — A critical review," Applied Energy, Elsevier, vol. 262(C).
    2. Yuan, Jiehui & Luo, Dongkun & Feng, Lianyong, 2015. "A review of the technical and economic evaluation techniques for shale gas development," Applied Energy, Elsevier, vol. 148(C), pages 49-65.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuhua Gao & Junhong Yu & Xinchun Shang & Weiyao Zhu, 2023. "Investigation on Nonlinear Behaviors of Seepage in Deep Shale Gas Reservoir with Viscoelasticity," Energies, MDPI, vol. 16(17), pages 1-23, August.
    2. Yang, Run & Liu, Xiangui & Yu, Rongze & Hu, Zhiming & Duan, Xianggang, 2022. "Long short-term memory suggests a model for predicting shale gas production," Applied Energy, Elsevier, vol. 322(C).
    3. Huang, Liang & Ning, Zhengfu & Wang, Qing & Zhang, Wentong & Cheng, Zhilin & Wu, Xiaojun & Qin, Huibo, 2018. "Effect of organic type and moisture on CO2/CH4 competitive adsorption in kerogen with implications for CO2 sequestration and enhanced CH4 recovery," Applied Energy, Elsevier, vol. 210(C), pages 28-43.
    4. Zhou, Junping & Tian, Shifeng & Zhou, Lei & Xian, Xuefu & Yang, Kang & Jiang, Yongdong & Zhang, Chengpeng & Guo, Yaowen, 2020. "Experimental investigation on the influence of sub- and super-critical CO2 saturation time on the permeability of fractured shale," Energy, Elsevier, vol. 191(C).
    5. Xiaoqian Guo & Qiang Yan & Anjian Wang, 2017. "Assessment of Methods for Forecasting Shale Gas Supply in China Based on Economic Considerations," Energies, MDPI, vol. 10(11), pages 1-14, October.
    6. Yang, Jinghua & Wang, Min & Wu, Lei & Liu, Yanwei & Qiu, Shuxia & Xu, Peng, 2021. "A novel Monte Carlo simulation on gas flow in fractal shale reservoir," Energy, Elsevier, vol. 236(C).
    7. Wenchao Liu & Yuejie Yang & Chengcheng Qiao & Chen Liu & Boyu Lian & Qingwang Yuan, 2023. "Progress of Seepage Law and Development Technologies for Shale Condensate Gas Reservoirs," Energies, MDPI, vol. 16(5), pages 1-30, March.
    8. Jin, Xu & Wang, Xiaoqi & Yan, Weipeng & Meng, Siwei & Liu, Xiaodan & Jiao, Hang & Su, Ling & Zhu, Rukai & Liu, He & Li, Jianming, 2019. "Exploration and casting of large scale microscopic pathways for shale using electrodeposition," Applied Energy, Elsevier, vol. 247(C), pages 32-39.
    9. Kim, Tae Hong & Cho, Jinhyung & Lee, Kun Sang, 2017. "Evaluation of CO2 injection in shale gas reservoirs with multi-component transport and geomechanical effects," Applied Energy, Elsevier, vol. 190(C), pages 1195-1206.
    10. Wang, Sen & Qin, Chaoxu & Feng, Qihong & Javadpour, Farzam & Rui, Zhenhua, 2021. "A framework for predicting the production performance of unconventional resources using deep learning," Applied Energy, Elsevier, vol. 295(C).
    11. Lin Tan & Lingzhi Xie & Bo He & Yao Zhang, 2024. "Multi-Fracture Propagation Considering Perforation Erosion with Respect to Multi-Stage Fracturing in Shale Reservoirs," Energies, MDPI, vol. 17(4), pages 1-21, February.
    12. Zou, Youqin & Yang, Changbing & Wu, Daishe & Yan, Chun & Zeng, Masun & Lan, Yingying & Dai, Zhenxue, 2016. "Probabilistic assessment of shale gas production and water demand at Xiuwu Basin in China," Applied Energy, Elsevier, vol. 180(C), pages 185-195.
    13. Bowen Ling & Hasan J. Khan & Jennifer L. Druhan & Ilenia Battiato, 2020. "Multi-Scale Microfluidics for Transport in Shale Fabric," Energies, MDPI, vol. 14(1), pages 1-23, December.
    14. Prinisha Manda & Diakanua Bavon Nkazi, 2020. "The Evaluation and Sensitivity of Decline Curve Modelling," Energies, MDPI, vol. 13(11), pages 1-16, June.
    15. Niu, Wente & Lu, Jialiang & Sun, Yuping & Zhang, Xiaowei & Li, Qiaojing & Cao, Xu & Liang, Pingping & Zhan, Hongming, 2024. "Techno-economic integration evaluation in shale gas development based on ensemble learning," Applied Energy, Elsevier, vol. 357(C).
    16. Fargalla, Mandella Ali M. & Yan, Wei & Deng, Jingen & Wu, Tao & Kiyingi, Wyclif & Li, Guangcong & Zhang, Wei, 2024. "TimeNet: Time2Vec attention-based CNN-BiGRU neural network for predicting production in shale and sandstone gas reservoirs," Energy, Elsevier, vol. 290(C).
    17. Wu, Jian & Gan, Yixiang & Shi, Zhang & Huang, Pengyu & Shen, Luming, 2023. "Pore-scale lattice Boltzmann simulation of CO2-CH4 displacement in shale matrix," Energy, Elsevier, vol. 278(PB).
    18. Taha Yehia & Ahmed Naguib & Mostafa M. Abdelhafiz & Gehad M. Hegazy & Omar Mahmoud, 2023. "Probabilistic Decline Curve Analysis: State-of-the-Art Review," Energies, MDPI, vol. 16(10), pages 1-20, May.
    19. Li, Yanbin & Li, Yun & Wang, Bingqian & Chen, Zhuoer & Nie, Dan, 2016. "The status quo review and suggested policies for shale gas development in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 420-428.
    20. Yang, Yan & Wang, Limao & Fang, Yebing & Mou, Chufu, 2017. "Integrated value of shale gas development: A comparative analysis in the United States and China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1465-1478.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5910-:d:1528894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.