Experimental investigation on the influence of sub- and super-critical CO2 saturation time on the permeability of fractured shale
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2019.116574
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Lyu, Qiao & Long, Xinping & Ranjith, P.G. & Tan, Jingqiang & Kang, Yong & Wang, Zhanghu, 2018. "Experimental investigation on the mechanical properties of a low-clay shale with different adsorption times in sub-/super-critical CO2," Energy, Elsevier, vol. 147(C), pages 1288-1298.
- Feng, Gan & Kang, Yong & Sun, Ze-dong & Wang, Xiao-chuan & Hu, Yao-qing, 2019. "Effects of supercritical CO2 adsorption on the mechanical characteristics and failure mechanisms of shale," Energy, Elsevier, vol. 173(C), pages 870-882.
- Jiang, Yongdong & Luo, Yahuang & Lu, Yiyu & Qin, Chao & Liu, Hui, 2016. "Effects of supercritical CO2 treatment time, pressure, and temperature on microstructure of shale," Energy, Elsevier, vol. 97(C), pages 173-181.
- Haitao Guo & Yongsheng Wang & Zhongmin Wang, 2016. "Shale Development and China," Natural Resource Management and Policy, in: Yongsheng Wang & William E. Hefley (ed.), The Global Impact of Unconventional Shale Gas Development, pages 131-147, Springer.
- Yuan, Jiehui & Luo, Dongkun & Feng, Lianyong, 2015. "A review of the technical and economic evaluation techniques for shale gas development," Applied Energy, Elsevier, vol. 148(C), pages 49-65.
- Nasvi, M.C.M. & Ranjith, P.G. & Sanjayan, J. & Haque, A., 2013. "Sub- and super-critical carbon dioxide permeability of wellbore materials under geological sequestration conditions: An experimental study," Energy, Elsevier, vol. 54(C), pages 231-239.
- Li, Yanbin & Li, Yun & Wang, Bingqian & Chen, Zhuoer & Nie, Dan, 2016. "The status quo review and suggested policies for shale gas development in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 420-428.
- Yin, Hong & Zhou, Junping & Xian, Xuefu & Jiang, Yongdong & Lu, Zhaohui & Tan, Jingqiang & Liu, Guojun, 2017. "Experimental study of the effects of sub- and super-critical CO2 saturation on the mechanical characteristics of organic-rich shales," Energy, Elsevier, vol. 132(C), pages 84-95.
- Rahm, Dianne, 2011. "Regulating hydraulic fracturing in shale gas plays: The case of Texas," Energy Policy, Elsevier, vol. 39(5), pages 2974-2981, May.
- Middleton, Richard S. & Carey, J. William & Currier, Robert P. & Hyman, Jeffrey D. & Kang, Qinjun & Karra, Satish & Jiménez-Martínez, Joaquín & Porter, Mark L. & Viswanathan, Hari S., 2015. "Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO2," Applied Energy, Elsevier, vol. 147(C), pages 500-509.
- Hu, Desheng & Xu, Shengqing, 2013. "Opportunity, challenges and policy choices for China on the development of shale gas," Energy Policy, Elsevier, vol. 60(C), pages 21-26.
- Lu, Yiyu & Chen, Xiayu & Tang, Jiren & Li, Honglian & Zhou, Lei & Han, Shuaibin & Ge, Zhaolong & Xia, Binwei & Shen, Huajian & Zhang, Jing, 2019. "Relationship between pore structure and mechanical properties of shale on supercritical carbon dioxide saturation," Energy, Elsevier, vol. 172(C), pages 270-285.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yang, Kang & Zhou, Junping & Xian, Xuefu & Zhou, Lei & Zhang, Chengpeng & Tian, Shifeng & Lu, Zhaohui & Zhang, Fengshou, 2022. "Chemical-mechanical coupling effects on the permeability of shale subjected to supercritical CO2-water exposure," Energy, Elsevier, vol. 248(C).
- Cheng, P. & Zhang, C.P. & Ma, Z.Y. & Zhou, J.P. & Zhang, D.C. & Liu, X.F. & Chen, H. & Ranjith, P.G., 2022. "Experimental study of micromechanical properties alterations of shale matrix treated by ScCO2-Water saturation using nanoindentation tests," Energy, Elsevier, vol. 242(C).
- Xiang Ao & Baobao Wang & Yuxi Rao & Lang Zhang & Yu Wang & Hongkun Tang, 2023. "Effect of CO 2 Corrosion and Adsorption-Induced Strain on Permeability of Oil Shale: Numerical Simulation," Energies, MDPI, vol. 16(2), pages 1-13, January.
- Zhu, Hongjian & Ju, Yiwen & Yang, Manping & Huang, Cheng & Feng, Hongye & Qiao, Peng & Ma, Chao & Su, Xin & Lu, Yanjun & Shi, Erxiu & Han, Jinxuan, 2022. "Grain-scale petrographic evidence for distinguishing detrital and authigenic quartz in shale: How much of a role do they play for reservoir property and mechanical characteristic?," Energy, Elsevier, vol. 239(PC).
- Tian, Shifeng & Zhou, Junping & Xian, Xuefu & Gan, Quan & Zhang, Chengpeng & Dong, Zhiqiang & Kuang, Nianjie, 2023. "The impact of supercritical CO2 exposure time on the effective stress law for permeability in shale," Energy, Elsevier, vol. 284(C).
- Gao, Zheng & Li, Bobo & Li, Jianhua & Jia, Lidan & Wang, Zhonghui, 2023. "Adsorption characteristics and thermodynamic analysis of shale in northern Guizhou, China: Measurement, modeling and prediction," Energy, Elsevier, vol. 262(PA).
- Qin, Chao & Jiang, Yongdong & Zuo, Shuangying & Chen, Shiwan & Xiao, Siyou & Liu, Zhengjie, 2021. "Investigation of adsorption kinetics of CH4 and CO2 on shale exposure to supercritical CO2," Energy, Elsevier, vol. 236(C).
- Tian, Shifeng & Zhou, Junping & Xian, Xuefu & Gan, Quan & Yang, Kang & Zheng, Yi & Deng, Guangrong & Zhang, Fengshou, 2023. "Impact of supercritical CO2 exposure time on the porosity and permeability of dry and wet shale: The influence of chemo-mechanical coupling effects," Energy, Elsevier, vol. 270(C).
- Shi, Wenrui & Zhang, Chaomo & Jiang, Shu & Liao, Yong & Shi, Yuanhui & Feng, Aiguo & Young, Steven, 2022. "Study on pressure-boosting stimulation technology in shale gas horizontal wells in the Fuling shale gas field," Energy, Elsevier, vol. 254(PB).
- Niu, Qinghe & Wang, Qizhi & Wang, Wei & Chang, Jiangfang & Chen, Mingyi & Wang, Haichao & Cai, Nian & Fan, Li, 2022. "Responses of multi-scale microstructures, physical-mechanical and hydraulic characteristics of roof rocks caused by the supercritical CO2-water-rock reaction," Energy, Elsevier, vol. 238(PB).
- Shi, Rui & Liu, Jishan & Wang, Xiaoming & Wei, Mingyao & Elsworth, Derek, 2021. "A critical analysis of shale laboratory permeability evolution data," Energy, Elsevier, vol. 236(C).
- Qin, Lei & Wang, Ping & Lin, Haifei & Li, Shugang & Zhou, Bin & Bai, Yang & Yan, Dongjie & Ma, Chao, 2023. "Quantitative characterization of the pore volume fractal dimensions for three kinds of liquid nitrogen frozen coal and its enlightenment to coalbed methane exploitation," Energy, Elsevier, vol. 263(PA).
- Li, Jing & Xie, Yetong & Liu, Huimin & Zhang, Xuecai & Li, Chuanhua & Zhang, Lisong, 2023. "Combining macro and micro experiments to reveal the real-time evolution of permeability of shale," Energy, Elsevier, vol. 262(PB).
- Wang, Chenyu & Li, Shujian & Zhang, Dongming & Yu, Beichen & Wang, Xiaolei, 2023. "Study on the effects of water content and layer orientation on mechanical properties and failure mechanism of shale," Energy, Elsevier, vol. 271(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Qin, Chao & Jiang, Yongdong & Luo, Yahuang & Zhou, Junping & Liu, Hao & Song, Xiao & Li, Dong & Zhou, Feng & Xie, Yingliang, 2020. "Effect of supercritical CO2 saturation pressures and temperatures on the methane adsorption behaviours of Longmaxi shale," Energy, Elsevier, vol. 206(C).
- Lu, Yiyu & Xu, Zijie & Li, Honglian & Tang, Jiren & Chen, Xiayu, 2021. "The influences of super-critical CO2 saturation on tensile characteristics and failure modes of shales," Energy, Elsevier, vol. 221(C).
- Bai, Bing & Ni, Hong-jian & Shi, Xian & Guo, Xing & Ding, Lu, 2021. "The experimental investigation of effect of supercritical CO2 immersion on mechanical properties and pore structure of shale," Energy, Elsevier, vol. 228(C).
- Ahmed Fatah & Ziad Bennour & Hisham Ben Mahmud & Raoof Gholami & Md. Mofazzal Hossain, 2020. "A Review on the Influence of CO 2 /Shale Interaction on Shale Properties: Implications of CCS in Shales," Energies, MDPI, vol. 13(12), pages 1-27, June.
- Wang, Yan & Zhong, Dong-Liang & Li, Zheng & Li, Jian-Bo, 2020. "Application of tetra-n-butyl ammonium bromide semi-clathrate hydrate for CO2 capture from unconventional natural gases," Energy, Elsevier, vol. 197(C).
- Li, Sihai & Zhang, Shicheng & Xing, Huilin & Zou, Yushi, 2022. "CO2–brine–rock interactions altering the mineralogical, physical, and mechanical properties of carbonate-rich shale oil reservoirs," Energy, Elsevier, vol. 256(C).
- Chunsheng Yu & Xiao Zhao & Qi Jiang & Xiaosha Lin & Hengyuan Gong & Xuanqing Chen, 2022. "Shale Microstructure Characteristics under the Action of Supercritical Carbon Dioxide (Sc-CO 2 )," Energies, MDPI, vol. 15(22), pages 1-9, November.
- Choi, Chae-Soon & Kim, Jineon & Song, Jae-Joon, 2021. "Analysis of shale property changes after geochemical interaction under CO2 sequestration conditions," Energy, Elsevier, vol. 214(C).
- Stian Rørheim & Mohammad Hossain Bhuiyan & Andreas Bauer & Pierre Rolf Cerasi, 2021. "On the Effect of CO 2 on Seismic and Ultrasonic Properties: A Novel Shale Experiment," Energies, MDPI, vol. 14(16), pages 1-20, August.
- Lu, Yiyu & Chen, Xiayu & Tang, Jiren & Li, Honglian & Zhou, Lei & Han, Shuaibin & Ge, Zhaolong & Xia, Binwei & Shen, Huajian & Zhang, Jing, 2019. "Relationship between pore structure and mechanical properties of shale on supercritical carbon dioxide saturation," Energy, Elsevier, vol. 172(C), pages 270-285.
- Dabbaghi, Ehsan & Ng, Kam, 2024. "Effects of CO2 on the mineralogy, mechanical, and transport properties of rocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
- Mohammad H. Bhuiyan & Nicolaine Agofack & Kamila M. Gawel & Pierre R. Cerasi, 2020. "Micro- and Macroscale Consequences of Interactions between CO 2 and Shale Rocks," Energies, MDPI, vol. 13(5), pages 1-30, March.
- Feng, Gan & Kang, Yong & Sun, Ze-dong & Wang, Xiao-chuan & Hu, Yao-qing, 2019. "Effects of supercritical CO2 adsorption on the mechanical characteristics and failure mechanisms of shale," Energy, Elsevier, vol. 173(C), pages 870-882.
- Yang, Kang & Zhou, Junping & Xian, Xuefu & Zhou, Lei & Zhang, Chengpeng & Tian, Shifeng & Lu, Zhaohui & Zhang, Fengshou, 2022. "Chemical-mechanical coupling effects on the permeability of shale subjected to supercritical CO2-water exposure," Energy, Elsevier, vol. 248(C).
- Lyu, Qiao & Long, Xinping & Ranjith, P.G. & Tan, Jingqiang & Kang, Yong & Wang, Zhanghu, 2018. "Experimental investigation on the mechanical properties of a low-clay shale with different adsorption times in sub-/super-critical CO2," Energy, Elsevier, vol. 147(C), pages 1288-1298.
- Yugang Cheng & Mengru Zeng & Zhaohui Lu & Xidong Du & Hong Yin & Liu Yang, 2020. "Effects of Supercritical CO 2 Treatment Temperatures on Mineral Composition, Pore Structure and Functional Groups of Shale: Implications for CO 2 Sequestration," Sustainability, MDPI, vol. 12(9), pages 1-22, May.
- Yang, Yan & Wang, Limao & Fang, Yebing & Mou, Chufu, 2017. "Integrated value of shale gas development: A comparative analysis in the United States and China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1465-1478.
- Guo, Yide & Huang, Linqi & Li, Xibing, 2023. "Experimental investigation of the tensile behavior and acoustic emission characteristics of anisotropic shale under geothermal environment," Energy, Elsevier, vol. 263(PD).
- Zhong Wang & Yuyan Luo & Pengchong Li & Xiaoqian Cai, 2018. "Problem Orientated Analysis on China’s Shale Gas Policy," Energies, MDPI, vol. 11(11), pages 1-17, October.
- Yin, Hong & Zhou, Junping & Xian, Xuefu & Jiang, Yongdong & Lu, Zhaohui & Tan, Jingqiang & Liu, Guojun, 2017. "Experimental study of the effects of sub- and super-critical CO2 saturation on the mechanical characteristics of organic-rich shales," Energy, Elsevier, vol. 132(C), pages 84-95.
More about this item
Keywords
Shale gas; CO2 enhanced shale gas recovery; Permeability; Adsorption induced swelling; CO2 sequestration;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:191:y:2020:i:c:s0360544219322698. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.