IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i22p5674-d1519947.html
   My bibliography  Save this article

Single Well Production Prediction Model of Gas Reservoir Based on CNN-BILSTM-AM

Author

Listed:
  • Daihong Gu

    (College of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, China)

  • Rongchen Zheng

    (State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Sinopec, Beijing 100083, China
    Key Laboratory of Marine Oil & Gas Reservoirs Production, Sinopec, Beijing 100083, China)

  • Peng Cheng

    (No. 4 Oil Production Plant of Huabei Oilfield Company, CNPC, Langfang 065000, China)

  • Shuaiqi Zhou

    (Research Institute of Petroleum Exploration & Development, Huabei Oilfield Company, PetroChina, Renqiu 062552, China)

  • Gongjie Yan

    (No. 5 Oil Production Plant of Huabei Oilfield Company, CNPC, Xinji 051200, China)

  • Haitao Liu

    (No. 5 Oil Production Plant of Huabei Oilfield Company, CNPC, Xinji 051200, China)

  • Kexin Yang

    (No. 5 Oil Production Plant of Huabei Oilfield Company, CNPC, Xinji 051200, China)

  • Jianguo Wang

    (College of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, China)

  • Yuan Zhu

    (College of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, China)

  • Mingwei Liao

    (College of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, China)

Abstract

In the prediction of single-well production in gas reservoirs, the traditional empirical formula of gas reservoirs generally shows poor accuracy. In the process of machine learning training and prediction, the problems of small data volume and dirty data are often encountered. In order to overcome the above problems, a single-well production prediction model of gas reservoirs based on CNN-BILSTM-AM is proposed. The model is built by long-term and short-term memory neural networks, convolutional neural networks and attention modules. The input of the model includes the production of the previous period and its influencing factors. At the same time, the fitting production and error value of the traditional gas reservoir empirical formula are introduced to predict the future production data. The loss function is used to evaluate the deviation between the predicted data and the real data, and the Bayesian hyperparameter optimization algorithm is used to optimize the model structure and comprehensively improve the generalization ability of the model. Three single wells in the Daniudi D28 well area were selected as the database, and the CNN-BILSTM-AM model was used to predict the single-well production. The results show that compared with the prediction results of the convolutional neural network (CNN) model, long short-term memory neural network (LSTM) model and bidirectional long short-term memory neural network (BILSTM) model, the error of the CNN-BILSTM-AM model on the test set of three experimental wells is reduced by 6.2425%, 4.9522% and 3.0750% on average. It shows that on the basis of coupling the empirical formula of traditional gas reservoirs, the CNN-BILSTM-AM model meets the high-precision requirements for the single-well production prediction of gas reservoirs, which is of great significance to guide the efficient development of oil fields and ensure the safety of China’s energy strategy.

Suggested Citation

  • Daihong Gu & Rongchen Zheng & Peng Cheng & Shuaiqi Zhou & Gongjie Yan & Haitao Liu & Kexin Yang & Jianguo Wang & Yuan Zhu & Mingwei Liao, 2024. "Single Well Production Prediction Model of Gas Reservoir Based on CNN-BILSTM-AM," Energies, MDPI, vol. 17(22), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5674-:d:1519947
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/22/5674/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/22/5674/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Wei & Li, Xiangchengzhen & Qi, ZhongLi & Zhao, HaiHang & Yi, Jun, 2024. "A shale gas production prediction model based on masked convolutional neural network," Applied Energy, Elsevier, vol. 353(PA).
    2. Zha, Wenshu & Liu, Yuping & Wan, Yujin & Luo, Ruilan & Li, Daolun & Yang, Shan & Xu, Yanmei, 2022. "Forecasting monthly gas field production based on the CNN-LSTM model," Energy, Elsevier, vol. 260(C).
    3. Fargalla, Mandella Ali M. & Yan, Wei & Deng, Jingen & Wu, Tao & Kiyingi, Wyclif & Li, Guangcong & Zhang, Wei, 2024. "TimeNet: Time2Vec attention-based CNN-BiGRU neural network for predicting production in shale and sandstone gas reservoirs," Energy, Elsevier, vol. 290(C).
    4. Yan, Qin & Lu, Zhiying & Liu, Hong & He, Xingtang & Zhang, Xihai & Guo, Jianlin, 2024. "Short-term prediction of integrated energy load aggregation using a bi-directional simple recurrent unit network with feature-temporal attention mechanism ensemble learning model," Applied Energy, Elsevier, vol. 355(C).
    5. Pan, Shaowei & Yang, Bo & Wang, Shukai & Guo, Zhi & Wang, Lin & Liu, Jinhua & Wu, Siyu, 2023. "Oil well production prediction based on CNN-LSTM model with self-attention mechanism," Energy, Elsevier, vol. 284(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moreno, Sinvaldo Rodrigues & Seman, Laio Oriel & Stefenon, Stefano Frizzo & Coelho, Leandro dos Santos & Mariani, Viviana Cocco, 2024. "Enhancing wind speed forecasting through synergy of machine learning, singular spectral analysis, and variational mode decomposition," Energy, Elsevier, vol. 292(C).
    2. Wang, Jun & Cao, Junxing, 2024. "Reservoir properties inversion using attention-based parallel hybrid network integrating feature selection and transfer learning," Energy, Elsevier, vol. 304(C).
    3. Shi, Changfeng & Zhi, Jiaqi & Yao, Xiao & Zhang, Hong & Yu, Yue & Zeng, Qingshun & Li, Luji & Zhang, Yuxi, 2023. "How can China achieve the 2030 carbon peak goal—a crossover analysis based on low-carbon economics and deep learning," Energy, Elsevier, vol. 269(C).
    4. Feng, Zhanyu & Zhang, Jian & Jiang, Han & Yao, Xuejian & Qian, Yu & Zhang, Haiyan, 2024. "Energy consumption prediction strategy for electric vehicle based on LSTM-transformer framework," Energy, Elsevier, vol. 302(C).
    5. Peng, Shiliang & Fan, Lin & Zhang, Li & Su, Huai & He, Yuxuan & He, Qian & Wang, Xiao & Yu, Dejun & Zhang, Jinjun, 2024. "Spatio-temporal prediction of total energy consumption in multiple regions using explainable deep neural network," Energy, Elsevier, vol. 301(C).
    6. Tian, Chenlu & Liu, Yechun & Zhang, Guiqing & Yang, Yalong & Yan, Yi & Li, Chengdong, 2024. "Transfer learning based hybrid model for power demand prediction of large-scale electric vehicles," Energy, Elsevier, vol. 300(C).
    7. Stefenon, Stefano Frizzo & Seman, Laio Oriel & Aquino, Luiza Scapinello & Coelho, Leandro dos Santos, 2023. "Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants," Energy, Elsevier, vol. 274(C).
    8. Aniket Vatsa & Ananda Shankar Hati & Vadim Bolshev & Alexander Vinogradov & Vladimir Panchenko & Prasun Chakrabarti, 2023. "Deep Learning-Based Transformer Moisture Diagnostics Using Long Short-Term Memory Networks," Energies, MDPI, vol. 16(5), pages 1-14, March.
    9. Qin, Fuli & Tong, Mingyu & Huang, Ying & Zhang, Yubo, 2024. "Modeling, prediction and analysis of natural gas consumption in China using a novel dynamic nonlinear multivariable grey delay model," Energy, Elsevier, vol. 305(C).
    10. Karla Schröder & Gonzalo Farias & Sebastián Dormido-Canto & Ernesto Fabregas, 2024. "Comparative Analysis of Deep Learning Methods for Fault Avoidance and Predicting Demand in Electrical Distribution," Energies, MDPI, vol. 17(11), pages 1-13, June.
    11. Fargalla, Mandella Ali M. & Yan, Wei & Deng, Jingen & Wu, Tao & Kiyingi, Wyclif & Li, Guangcong & Zhang, Wei, 2024. "TimeNet: Time2Vec attention-based CNN-BiGRU neural network for predicting production in shale and sandstone gas reservoirs," Energy, Elsevier, vol. 290(C).
    12. Fuquan Song & Heying Ding & Yongzheng Wang & Shiming Zhang & Jinbiao Yu, 2023. "A Well Production Prediction Method of Tight Reservoirs Based on a Hybrid Neural Network," Energies, MDPI, vol. 16(6), pages 1-22, March.
    13. Yiling Fan & Zhuang Ma & Wanwei Tang & Jing Liang & Pengfei Xu, 2024. "Using Crested Porcupine Optimizer Algorithm and CNN-LSTM-Attention Model Combined with Deep Learning Methods to Enhance Short-Term Power Forecasting in PV Generation," Energies, MDPI, vol. 17(14), pages 1-17, July.
    14. Zhou, Wei & Li, Xiangchengzhen & Qi, ZhongLi & Zhao, HaiHang & Yi, Jun, 2024. "A shale gas production prediction model based on masked convolutional neural network," Applied Energy, Elsevier, vol. 353(PA).
    15. Mi, Hanning & Chen, Sijie & Li, Qingxin & Shi, Ming & Hou, Shuoming & Zheng, Linfeng & Xu, Chengke & Yan, Zheng & Li, Canbing, 2024. "Strategic bidding by predicting locational marginal price with aggregated supply curve," Energy, Elsevier, vol. 304(C).
    16. Xiangming Kong & Yuetian Liu & Liang Xue & Guanlin Li & Dongdong Zhu, 2023. "A Hybrid Oil Production Prediction Model Based on Artificial Intelligence Technology," Energies, MDPI, vol. 16(3), pages 1-16, January.
    17. Li, Daolun & Zhou, Xia & Xu, Yanmei & Wan, Yujin & Zha, Wenshu, 2023. "Deep learning-based analysis of the main controlling factors of different gas-fields recovery rate," Energy, Elsevier, vol. 285(C).
    18. Li, Baozhu & Lv, Xiaotian & Chen, Jiaxin, 2024. "Demand and supply gap analysis of Chinese new energy vehicle charging infrastructure: Based on CNN-LSTM prediction model," Renewable Energy, Elsevier, vol. 220(C).
    19. Fang, Yu & Jia, Chunhong & Wang, Xin & Min, Fan, 2024. "A fusion gas load prediction model with three-way residual error amendment," Energy, Elsevier, vol. 294(C).
    20. Banglong Pan & Hanming Yu & Hongwei Cheng & Shuhua Du & Shutong Cai & Minle Zhao & Juan Du & Fazhi Xie, 2023. "A CNN–LSTM Machine-Learning Method for Estimating Particulate Organic Carbon from Remote Sensing in Lakes," Sustainability, MDPI, vol. 15(17), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5674-:d:1519947. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.