IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i8p1793-d1372406.html
   My bibliography  Save this article

Energy Harnessing Performance of Oscillating Foil Submerged in the Wake of a Fixed Cylinder

Author

Listed:
  • Yongqing Luo

    (Southampton Ocean Engineering Joint Institution, Harbin Engineering University, Harbin 150001, China)

  • Houxian Wu

    (Southampton Ocean Engineering Joint Institution, Harbin Engineering University, Harbin 150001, China)

  • Shuhan Huang

    (Qingdao Qingtie Environmental Protection Technology, Qingdao Metro, Qingdao 266000, China)

  • Hai Sun

    (College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, China
    Marine Renewable Energy Laboratory, Department of Naval Architecture & Marine Engineering, University of Michigan, 2600 Draper Road, Ann Arbor, MI 48109, USA)

Abstract

The energy harnessing from flow-induced vibrations (FIV) by an oscillating foil placed tandemly behind a circular cylinder (which serves as a vortex generator) is investigated. The foil is submerged in the wake produced by the fixed cylinder and could oscillate in the direction perpendicular to the incoming flow with single-degree freedom. The spacing ratio ranges from 1.0 to 5.0. The oncoming fluid velocity is U = 1–10 m/s, corresponding to the reduced velocity U r = 3.81–38.08 and the Reynolds number Re = 9.58 × 10 3 –9.58 × 10 4 . Four harnessing damping ratios ( ζ harness = 0.0054–0.0216) are used to simulate the energy conversion conditions. The main conclusions are: (1) The optimal oscillation pattern related to the highest harnessed energy emerges as the spacing ratio close to 1.0. (2) The airflow energy converted by the foil is positively correlated with the harnessing damping ratio because the amplitude responses are similar at various harnessing damping ratios. A high velocity yields the highest harnessed power. (3) The harnessing efficiency of the foil could reach 48.89%, which is much more than that of an isolated flapping foil.

Suggested Citation

  • Yongqing Luo & Houxian Wu & Shuhan Huang & Hai Sun, 2024. "Energy Harnessing Performance of Oscillating Foil Submerged in the Wake of a Fixed Cylinder," Energies, MDPI, vol. 17(8), pages 1-21, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:8:p:1793-:d:1372406
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/8/1793/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/8/1793/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Zhenlin & Alam, Md. Mahbub & Qin, Bin & Zhou, Yu, 2020. "Energy harvesting from and vibration response of different diameter cylinders," Applied Energy, Elsevier, vol. 278(C).
    2. Li, Ningyu & Park, Hongrae & Sun, Hai & Bernitsas, Michael M., 2022. "Hydrokinetic energy conversion using flow induced oscillations of single-cylinder with large passive turbulence control," Applied Energy, Elsevier, vol. 308(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liguo Fan & Guoqiang Liu & Xianjin Song & Ce Xiang & Jiacheng Wei & Hui Xia, 2024. "Simulation and Experiments on Optimization of Vortex-Induced Vibration Power Generation System Based on Side-by-Side Double Blunt Bodies," Energies, MDPI, vol. 17(21), pages 1-23, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tamimi, V. & Esfehani, M.J. & Zeinoddini, M. & Seif, M.S. & Poncet, S., 2023. "Hydroelastic response and electromagnetic energy harvesting of square oscillators: Effects of free and fixed square wakes," Energy, Elsevier, vol. 263(PE).
    2. He, Kai & Vinod, Ashwin & Banerjee, Arindam, 2022. "Enhancement of energy capture by flow induced motion of a circular cylinder using passive turbulence control: Decoupling strip thickness and roughness effects," Renewable Energy, Elsevier, vol. 200(C), pages 283-293.
    3. Li, Huaijun & Bernitsas, Christopher C. & Congpuong, Nipit & Bernitsas, Michael M. & Sun, Hai, 2024. "Experimental investigation on synergistic flow-induced oscillation of three rough tandem-cylinders in hydrokinetic energy conversion," Applied Energy, Elsevier, vol. 359(C).
    4. Sun, Hongjun & Yang, Zhen & Li, Jinxia & Ding, Hongbing & Lv, Pengfei, 2024. "Performance evaluation and optimal design for passive turbulence control-based hydrokinetic energy harvester using EWM-based TOPSIS," Energy, Elsevier, vol. 298(C).
    5. Li, Ningyu & Park, Hongrae & Sun, Hai & Bernitsas, Michael M., 2022. "Hydrokinetic energy conversion using flow induced oscillations of single-cylinder with large passive turbulence control," Applied Energy, Elsevier, vol. 308(C).
    6. Chen, Shun & Zhao, Liya, 2023. "A quasi-zero stiffness two degree-of-freedom nonlinear galloping oscillator for ultra-low wind speed aeroelastic energy harvesting," Applied Energy, Elsevier, vol. 331(C).
    7. Park, Hongrae & Mentzelopoulos, Andreas P. & Bernitsas, Michael M., 2023. "Hydrokinetic energy harvesting from slow currents using flow-induced oscillations," Renewable Energy, Elsevier, vol. 214(C), pages 242-254.
    8. Tamimi, V. & Wu, J. & Naeeni, S.T.O. & Shahvaghar-Asl, S., 2021. "Effects of dissimilar wakes on energy harvesting of Flow Induced Vibration (FIV) based converters with circular oscillator," Applied Energy, Elsevier, vol. 281(C).
    9. Chen, Weilin & Li, Yuzhu, 2024. "Energy harvesting performance of an elastically mounted semi-circular cylinder," Renewable Energy, Elsevier, vol. 229(C).
    10. Garzozi, Anan & Greenblatt, David, 2023. "Wind energy generation by forced vortex shedding," Applied Energy, Elsevier, vol. 349(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:8:p:1793-:d:1372406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.