IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i24p6382-d1547007.html
   My bibliography  Save this article

The Influence of Selected Parameters of the Mathematical Model on the Simulation Performance of a Municipal Waste-to-Energy Plant Absorber

Author

Listed:
  • Michał Jurczyk

    (Total Office, Zawierciańska 4, 32-310 Klucze, Poland)

  • Marian Banaś

    (Department of Power Engineering and Environmental Protection, Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland)

  • Tadeusz Pająk

    (Department of Power Engineering and Environmental Protection, Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland)

  • Krzysztof Dziedzic

    (R&D Department, Dziedzic Transport, Świętokrzyska 22b, 34-300 Żywiec, Poland)

  • Bogusława Łapczyńska-Kordon

    (Department of Mechanical Engineering and Agrophysics, University of Agriculture in Krakow, Balicka 120, 30-149 Kraków, Poland)

  • Marcin Jewiarz

    (Department of Mechanical Engineering and Agrophysics, University of Agriculture in Krakow, Balicka 120, 30-149 Kraków, Poland)

Abstract

The primary research aim of this manuscript was to present a simplified absorber model and analyse the simulation results of the absorber model created to which, by design, only water was added and the outlet flue gas temperature was optimal. The obtained simulation results of the simplified absorber model were appropriately compared with the operational results of absorbers operating in professional WtE installations. This study focused on the simulation duration. The primary tool used in the paper is OpenFOAM (v2112). Two solvers were used for the calculations: ReactingParcelFoam and LTSReactingParcelFoam. They ran numerical tests on simplified absorber models. We evaluated the results according to the simulation time. We also examined the difference between the measured and calculated flue gas outlet temperatures. The results will guide further research on the absorber. They will speed up and improve the modelling of chemical processes. The only challenge was to define the chemical reactions and add a calcium molecule to the water droplet model. This work shows that we can simplify the absorber’s geometric model. It kept a low relative error and cuts the compute time. Using a local time step instead of a global one in numerical calculations significantly reduced their run time. It did this without increasing the relative error. The research can help develop complex three-phase flow models in the absorber in the future.

Suggested Citation

  • Michał Jurczyk & Marian Banaś & Tadeusz Pająk & Krzysztof Dziedzic & Bogusława Łapczyńska-Kordon & Marcin Jewiarz, 2024. "The Influence of Selected Parameters of the Mathematical Model on the Simulation Performance of a Municipal Waste-to-Energy Plant Absorber," Energies, MDPI, vol. 17(24), pages 1-23, December.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6382-:d:1547007
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/24/6382/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/24/6382/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaomei Guo & Mingyu Yang & Fengqin Li & Zuchao Zhu & Baoling Cui, 2024. "Investigation on Cryogenic Cavitation Characteristics of an Inducer Considering Thermodynamic Effects," Energies, MDPI, vol. 17(15), pages 1-14, July.
    2. Michele Bertone & Luca Stabile & Giorgio Buonanno, 2024. "An Overview of Waste-to-Energy Incineration Integrated with Carbon Capture Utilization or Storage Retrofit Application," Sustainability, MDPI, vol. 16(10), pages 1-18, May.
    3. Poma, Christian & Verda, Vittorio & Consonni, Stefano, 2010. "Design and performance evaluation of a waste-to-energy plant integrated with a combined cycle," Energy, Elsevier, vol. 35(2), pages 786-793.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bujak, Janusz Wojciech, 2015. "Production of waste energy and heat in hospital facilities," Energy, Elsevier, vol. 91(C), pages 350-362.
    2. Blanco, Jesús M. & Vazquez, L. & Peña, F., 2012. "Investigation on a new methodology for thermal power plant assessment through live diagnosis monitoring of selected process parameters; application to a case study," Energy, Elsevier, vol. 42(1), pages 170-180.
    3. Baldvinsson, Ivar & Nakata, Toshihiko, 2014. "A comparative exergy and exergoeconomic analysis of a residential heat supply system paradigm of Japan and local source based district heating system using SPECO (specific exergy cost) method," Energy, Elsevier, vol. 74(C), pages 537-554.
    4. Anton L. Esipovich & Andrey V. Vorotyntsev & Andrey A. Roslyakov & Dmitry E. Sykhanov & Olga A. Demchenko & Anton V. Stepykin & Konstantin K. Shirshin, 2025. "Numerical Simulation of Static Ammonia Mixer in Denox Unit of Flue Gas Purification Plant," Energies, MDPI, vol. 18(2), pages 1-16, January.
    5. Chen, Heng & Li, Jiarui & Li, Tongyu & Xu, Gang & Jin, Xi & Wang, Min & Liu, Tong, 2022. "Performance assessment of a novel medical-waste-to-energy design based on plasma gasification and integrated with a municipal solid waste incineration plant," Energy, Elsevier, vol. 245(C).
    6. Rocco, Matteo V. & Di Lucchio, Alberto & Colombo, Emanuela, 2017. "Exergy Life Cycle Assessment of electricity production from Waste-to-Energy technology: A Hybrid Input-Output approach," Applied Energy, Elsevier, vol. 194(C), pages 832-844.
    7. Vazquez, Luis & Blanco, Jesús María & Ramis, Rolando & Peña, Francisco & Diaz, David, 2015. "Robust methodology for steady state measurements estimation based framework for a reliable long term thermal power plant operation performance monitoring," Energy, Elsevier, vol. 93(P1), pages 923-944.
    8. Hossam A. Gabbar & Mohamed Aboughaly & Stefano Russo, 2017. "Conceptual Design and Energy Analysis of Integrated Combined Cycle Gasification System," Sustainability, MDPI, vol. 9(8), pages 1-18, August.
    9. Xue, Xiaojun & Lv, Jiayang & Chen, Heng & Xu, Gang & Li, Qiubai, 2022. "Thermodynamic and economic analyses of a new compressed air energy storage system incorporated with a waste-to-energy plant and a biogas power plant," Energy, Elsevier, vol. 261(PB).
    10. Blanco, J.M. & Vazquez, L. & Peña, F. & Diaz, D., 2013. "New investigation on diagnosing steam production systems from multivariate time series applied to thermal power plants," Applied Energy, Elsevier, vol. 101(C), pages 589-599.
    11. Nirmal Acharya & Saroj Gautam & Sailesh Chitrakar & Igor Iliev & Ole Gunnar Dahlhaug, 2024. "Correlating Sediment Erosion in Rotary–Stationary Gaps of Francis Turbines with Complex Flow Patterns," Energies, MDPI, vol. 17(23), pages 1-24, November.
    12. Peiyuan Pan & Meiyan Zhang & Gang Xu & Heng Chen & Xiaona Song & Tong Liu, 2020. "Thermodynamic and Economic Analyses of a New Waste-to-Energy System Incorporated with a Biomass-Fired Power Plant," Energies, MDPI, vol. 13(17), pages 1-20, August.
    13. Liguo Fan & Guoqiang Liu & Xianjin Song & Ce Xiang & Jiacheng Wei & Hui Xia, 2024. "Simulation and Experiments on Optimization of Vortex-Induced Vibration Power Generation System Based on Side-by-Side Double Blunt Bodies," Energies, MDPI, vol. 17(21), pages 1-23, October.
    14. Przemyslaw Szulc & Janusz Skrzypacz, 2024. "CFD-Based Investigation of the Operation Process of Radial Labyrinth Machinery Under Different Geometrical Configurations," Energies, MDPI, vol. 17(24), pages 1-21, December.
    15. Junqiang Xu & Zemin Shang & Shan Qing, 2025. "Thermal Performance Analysis of Nanofluids for Heat Dissipation Based on Fluent," Energies, MDPI, vol. 18(1), pages 1-16, January.
    16. Chen, Heng & Zhang, Meiyan & Xue, Kai & Xu, Gang & Yang, Yongping & Wang, Zepeng & Liu, Wenyi & Liu, Tong, 2020. "An innovative waste-to-energy system integrated with a coal-fired power plant," Energy, Elsevier, vol. 194(C).
    17. Mancini, G. & Luciano, A. & Bolzonella, D. & Fatone, F. & Viotti, P. & Fino, D., 2021. "A water-waste-energy nexus approach to bridge the sustainability gap in landfill-based waste management regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    18. Balcazar, Juan Galvarino Cerda & Dias, Rubens Alves & Balestieri, José Antonio Perrella, 2013. "Analysis of hybrid waste-to-energy for medium-sized cities," Energy, Elsevier, vol. 55(C), pages 728-741.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6382-:d:1547007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.