IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i21p7417-d1273445.html
   My bibliography  Save this article

Artificial Intelligence in Photovoltaic Fault Identification and Diagnosis: A Systematic Review

Author

Listed:
  • Mahmudul Islam

    (Department of Computer Science and Engineering, Independent University, Dhaka 1229, Bangladesh)

  • Masud Rana Rashel

    (Instrumentation and Control Laboratory, Department of Mechatronics Engineering, University of Évora, 7000-671 Évora, Portugal)

  • Md Tofael Ahmed

    (Instrumentation and Control Laboratory, Department of Mechatronics Engineering, University of Évora, 7000-671 Évora, Portugal)

  • A. K. M. Kamrul Islam

    (College of Engineering, North Carolina A&T State University, Greensboro, NC 27411, USA)

  • Mouhaydine Tlemçani

    (Instrumentation and Control Laboratory, Department of Mechatronics Engineering, University of Évora, 7000-671 Évora, Portugal)

Abstract

Photovoltaic (PV) fault detection is crucial because undetected PV faults can lead to significant energy losses, with some cases experiencing losses of up to 10%. The efficiency of PV systems depends upon the reliable detection and diagnosis of faults. The integration of Artificial Intelligence (AI) techniques has been a growing trend in addressing these issues. The goal of this systematic review is to offer a comprehensive overview of the recent advancements in AI-based methodologies for PV fault detection, consolidating the key findings from 31 research papers. An initial pool of 142 papers were identified, from which 31 were selected for in-depth review following the PRISMA guidelines. The title, objective, methods, and findings of each paper were analyzed, with a focus on machine learning (ML) and deep learning (DL) approaches. ML and DL are particularly suitable for PV fault detection because of their capacity to process and analyze large amounts of data to identify complex patterns and anomalies. This study identified several AI techniques used for fault detection in PV systems, ranging from classical ML methods like k-nearest neighbor (KNN) and random forest to more advanced deep learning models such as Convolutional Neural Networks (CNNs). Quantum circuits and infrared imagery were also explored as potential solutions. The analysis found that DL models, in general, outperformed traditional ML models in accuracy and efficiency. This study shows that AI methodologies have evolved and been increasingly applied in PV fault detection. The integration of AI in PV fault detection offers high accuracy and effectiveness. After reviewing these studies, we proposed an Artificial Neural Network (ANN)-based method for PV fault detection and classification.

Suggested Citation

  • Mahmudul Islam & Masud Rana Rashel & Md Tofael Ahmed & A. K. M. Kamrul Islam & Mouhaydine Tlemçani, 2023. "Artificial Intelligence in Photovoltaic Fault Identification and Diagnosis: A Systematic Review," Energies, MDPI, vol. 16(21), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7417-:d:1273445
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/21/7417/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/21/7417/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Naveen Venkatesh Sridharan & Jerome Vasanth Joseph & Sugumaran Vaithiyanathan & Mohammadreza Aghaei, 2023. "Weightless Neural Network-Based Detection and Diagnosis of Visual Faults in Photovoltaic Modules," Energies, MDPI, vol. 16(15), pages 1-17, August.
    2. Van Gompel, Jonas & Spina, Domenico & Develder, Chris, 2022. "Satellite based fault diagnosis of photovoltaic systems using recurrent neural networks," Applied Energy, Elsevier, vol. 305(C).
    3. Livera, Andreas & Theristis, Marios & Makrides, George & Georghiou, George E., 2019. "Recent advances in failure diagnosis techniques based on performance data analysis for grid-connected photovoltaic systems," Renewable Energy, Elsevier, vol. 133(C), pages 126-143.
    4. Wang, Mengyuan & Xu, Xiaoyuan & Yan, Zheng, 2023. "Online fault diagnosis of PV array considering label errors based on distributionally robust logistic regression," Renewable Energy, Elsevier, vol. 203(C), pages 68-80.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boris I. Evstatiev & Dimitar T. Trifonov & Katerina G. Gabrovska-Evstatieva & Nikolay P. Valov & Nicola P. Mihailov, 2024. "PV Module Soiling Detection Using Visible Spectrum Imaging and Machine Learning," Energies, MDPI, vol. 17(20), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Van Gompel, Jonas & Spina, Domenico & Develder, Chris, 2023. "Cost-effective fault diagnosis of nearby photovoltaic systems using graph neural networks," Energy, Elsevier, vol. 266(C).
    2. Qu, Jiaqi & Sun, Qiang & Qian, Zheng & Wei, Lu & Zareipour, Hamidreza, 2024. "Fault diagnosis for PV arrays considering dust impact based on transformed graphical features of characteristic curves and convolutional neural network with CBAM modules," Applied Energy, Elsevier, vol. 355(C).
    3. Romero-Fiances, Irene & Livera, Andreas & Theristis, Marios & Makrides, George & Stein, Joshua S. & Nofuentes, Gustavo & de la Casa, Juan & Georghiou, George E., 2022. "Impact of duration and missing data on the long-term photovoltaic degradation rate estimation," Renewable Energy, Elsevier, vol. 181(C), pages 738-748.
    4. Belqasem Aljafari & Siva Rama Krishna Madeti & Priya Ranjan Satpathy & Sudhakar Babu Thanikanti & Bamidele Victor Ayodele, 2022. "Automatic Monitoring System for Online Module-Level Fault Detection in Grid-Tied Photovoltaic Plants," Energies, MDPI, vol. 15(20), pages 1-28, October.
    5. Tomáš Finsterle & Ladislava Černá & Pavel Hrzina & David Rokusek & Vítězslav Benda, 2021. "Diagnostics of PID Early Stage in PV Systems," Energies, MDPI, vol. 14(8), pages 1-15, April.
    6. Li, B. & Delpha, C. & Diallo, D. & Migan-Dubois, A., 2021. "Application of Artificial Neural Networks to photovoltaic fault detection and diagnosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    7. Wang, Mengyuan & Xu, Xiaoyuan & Yan, Zheng, 2023. "Online fault diagnosis of PV array considering label errors based on distributionally robust logistic regression," Renewable Energy, Elsevier, vol. 203(C), pages 68-80.
    8. Duberney Murillo-Yarce & José Alarcón-Alarcón & Marco Rivera & Carlos Restrepo & Javier Muñoz & Carlos Baier & Patrick Wheeler, 2020. "A Review of Control Techniques in Photovoltaic Systems," Sustainability, MDPI, vol. 12(24), pages 1-21, December.
    9. Li, Baojie & Hansen, Clifford W. & Chen, Xin & Diallo, Demba & Migan-Dubois, Anne & Delpha, Claude & Jain, Anubhav, 2024. "A robust I–V curve correction procedure for degraded photovoltaic modules," Renewable Energy, Elsevier, vol. 224(C).
    10. Mellit, A. & Benghanem, M. & Kalogirou, S. & Massi Pavan, A., 2023. "An embedded system for remote monitoring and fault diagnosis of photovoltaic arrays using machine learning and the internet of things," Renewable Energy, Elsevier, vol. 208(C), pages 399-408.
    11. Huang, Congzhi & Yang, Mengyuan, 2023. "Memory long and short term time series network for ultra-short-term photovoltaic power forecasting," Energy, Elsevier, vol. 279(C).
    12. Wang, Han & Zhang, Ning & Du, Ershun & Yan, Jie & Han, Shuang & Li, Nan & Li, Hongxia & Liu, Yongqian, 2023. "An adaptive identification method of abnormal data in wind and solar power stations," Renewable Energy, Elsevier, vol. 208(C), pages 76-93.
    13. Bakdi, Azzeddine & Bounoua, Wahiba & Mekhilef, Saad & Halabi, Laith M., 2019. "Nonparametric Kullback-divergence-PCA for intelligent mismatch detection and power quality monitoring in grid-connected rooftop PV," Energy, Elsevier, vol. 189(C).
    14. Li, Chenxi & Yang, Yongheng & Spataru, Sergiu & Zhang, Kanjian & Wei, Haikun, 2021. "A robust parametrization method of photovoltaic modules for enhancing one-diode model accuracy under varying operating conditions," Renewable Energy, Elsevier, vol. 168(C), pages 764-778.
    15. Fouzi Harrou & Bilal Taghezouit & Sofiane Khadraoui & Abdelkader Dairi & Ying Sun & Amar Hadj Arab, 2022. "Ensemble Learning Techniques-Based Monitoring Charts for Fault Detection in Photovoltaic Systems," Energies, MDPI, vol. 15(18), pages 1-28, September.
    16. Nien-Che Yang & Harun Ismail, 2022. "Voting-Based Ensemble Learning Algorithm for Fault Detection in Photovoltaic Systems under Different Weather Conditions," Mathematics, MDPI, vol. 10(2), pages 1-18, January.
    17. Francisco José Gimeno-Sales & Salvador Orts-Grau & Alejandro Escribá-Aparisi & Pablo González-Altozano & Ibán Balbastre-Peralta & Camilo Itzame Martínez-Márquez & María Gasque & Salvador Seguí-Chilet, 2020. "PV Monitoring System for a Water Pumping Scheme with a Lithium-Ion Battery Using Free Open-Source Software and IoT Technologies," Sustainability, MDPI, vol. 12(24), pages 1-28, December.
    18. Chen, Qi & Li, Xinyuan & Zhang, Zhengjia & Zhou, Chao & Guo, Zhiling & Liu, Zhengguang & Zhang, Haoran, 2023. "Remote sensing of photovoltaic scenarios: Techniques, applications and future directions," Applied Energy, Elsevier, vol. 333(C).
    19. Bilal Taghezouit & Fouzi Harrou & Cherif Larbes & Ying Sun & Smail Semaoui & Amar Hadj Arab & Salim Bouchakour, 2022. "Intelligent Monitoring of Photovoltaic Systems via Simplicial Empirical Models and Performance Loss Rate Evaluation under LabVIEW: A Case Study," Energies, MDPI, vol. 15(21), pages 1-30, October.
    20. Yang, Xilian & Zhao, Qunfei & Wang, Yuzhang & Cheng, Kanru, 2023. "Fault signal reconstruction for multi-sensors in gas turbine control systems based on prior knowledge from time series representation," Energy, Elsevier, vol. 262(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7417-:d:1273445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.