IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i20p5139-d1499680.html
   My bibliography  Save this article

Enhanced Wavelet Transform Dynamic Attention Transformer Model for Recycled Lithium-Ion Battery Anomaly Detection

Author

Listed:
  • Xin Liu

    (School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China)

  • Haihong Huang

    (School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China
    Senior Member, IEEE.)

  • Wenjing Chang

    (State Grid Anhui Ultra High Voltage Company, No. 397, Tongcheng South Road, Baohe District, Hefei 230000, China)

  • Yongqi Cao

    (School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China)

  • Yuhang Wang

    (School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China)

Abstract

Rapid advancements in electric vehicle (EV) technology have highlighted the importance of lithium-ion (Li) batteries. These batteries are essential for safety and reliability. Battery data show non-stationarity and complex dynamics, presenting challenges for current monitoring and prediction methods. These methods often fail to manage the variability seen in real-world environments. To address these challenges, we propose a Transformer model with a wavelet transform dynamic attention mechanism (WADT). The dynamic attention mechanism uses wavelet transform. It focuses adaptively on the most informative parts of the battery data to enhance the anomaly detection accuracy. We also developed a deep learning model with an improved Transformer architecture. This architecture is tailored for the complex dynamics of battery data time series. The model accounts for temporal dependencies and adapts to non-stationary behavior. Experiments on public battery datasets show our approach’s effectiveness. Our model significantly outperforms existing technologies with an accuracy of 0.89 and an AUC score of 0.88. These results validate our method’s innovation and effectiveness.

Suggested Citation

  • Xin Liu & Haihong Huang & Wenjing Chang & Yongqi Cao & Yuhang Wang, 2024. "Enhanced Wavelet Transform Dynamic Attention Transformer Model for Recycled Lithium-Ion Battery Anomaly Detection," Energies, MDPI, vol. 17(20), pages 1-15, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:20:p:5139-:d:1499680
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/20/5139/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/20/5139/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ma, Mina & Li, Xiaoyu & Gao, Wei & Sun, Jinhua & Wang, Qingsong & Mi, Chris, 2022. "Multi-fault diagnosis for series-connected lithium-ion battery pack with reconstruction-based contribution based on parallel PCA-KPCA," Applied Energy, Elsevier, vol. 324(C).
    2. Zhang, Shuzhi & Jiang, Shiyong & Wang, Hongxia & Zhang, Xiongwen, 2022. "A novel dual time-scale voltage sensor fault detection and isolation method for series-connected lithium-ion battery pack," Applied Energy, Elsevier, vol. 322(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Yiming & Ge, Xiaohua & Shen, Weixiang, 2024. "Multi-objective nonlinear observer design for multi-fault detection of lithium-ion battery in electric vehicles," Applied Energy, Elsevier, vol. 362(C).
    2. Tongrui Zhang & Ran Li & Yongqin Zhou, 2023. "Battery Fault Diagnosis Method Based on Online Least Squares Support Vector Machine," Energies, MDPI, vol. 16(21), pages 1-17, October.
    3. Ren, Song & Sun, Jing, 2024. "Multi-fault diagnosis strategy based on a non-redundant interleaved measurement circuit and improved fuzzy entropy for the battery system," Energy, Elsevier, vol. 292(C).
    4. Lin, Yu-Hsiu & Shen, Ting-Yu, 2023. "Novel cell screening and prognosing based on neurocomputing-based multiday-ahead time-series forecasting for predictive maintenance of battery modules in frequency regulation-energy storage systems," Applied Energy, Elsevier, vol. 351(C).
    5. Shen, Dongxu & Lyu, Chao & Yang, Dazhi & Hinds, Gareth & Wang, Lixin, 2023. "Connection fault diagnosis for lithium-ion battery packs in electric vehicles based on mechanical vibration signals and broad belief network," Energy, Elsevier, vol. 274(C).
    6. Seunghwan Jung & Minseok Kim & Eunkyeong Kim & Baekcheon Kim & Jinyong Kim & Kyeong-Hee Cho & Hyang-A Park & Sungshin Kim, 2024. "The Early Detection of Faults for Lithium-Ion Batteries in Energy Storage Systems Using Independent Component Analysis with Mahalanobis Distance," Energies, MDPI, vol. 17(2), pages 1-23, January.
    7. Julan Chen & Guangheng Qi & Kai Wang, 2023. "Synergizing Machine Learning and the Aviation Sector in Lithium-Ion Battery Applications: A Review," Energies, MDPI, vol. 16(17), pages 1-22, August.
    8. Song, Youngbin & Park, Shina & Kim, Sang Woo, 2023. "Model-free quantitative diagnosis of internal short circuit for lithium-ion battery packs under diverse operating conditions," Applied Energy, Elsevier, vol. 352(C).
    9. You, Yuqiang & Lin, Mingqiang & Meng, Jinhao & Wu, Ji & Wang, Wei, 2024. "Multi-scenario surface temperature estimation in lithium-ion batteries with transfer learning and LGT augmentation," Energy, Elsevier, vol. 304(C).
    10. Shen, Dongxu & Yang, Dazhi & Lyu, Chao & Ma, Jingyan & Hinds, Gareth & Sun, Qingmin & Du, Limei & Wang, Lixin, 2024. "Multi-sensor multi-mode fault diagnosis for lithium-ion battery packs with time series and discriminative features," Energy, Elsevier, vol. 290(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:20:p:5139-:d:1499680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.