IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i2p535-d1323964.html
   My bibliography  Save this article

The Early Detection of Faults for Lithium-Ion Batteries in Energy Storage Systems Using Independent Component Analysis with Mahalanobis Distance

Author

Listed:
  • Seunghwan Jung

    (Department of Electrical and Electronics Engineering, Pusan National University, Busan 46241, Republic of Korea)

  • Minseok Kim

    (Department of Electrical and Electronics Engineering, Pusan National University, Busan 46241, Republic of Korea)

  • Eunkyeong Kim

    (Department of Electrical and Electronics Engineering, Pusan National University, Busan 46241, Republic of Korea)

  • Baekcheon Kim

    (Department of Electrical and Electronics Engineering, Pusan National University, Busan 46241, Republic of Korea)

  • Jinyong Kim

    (Department of Electrical and Electronics Engineering, Pusan National University, Busan 46241, Republic of Korea)

  • Kyeong-Hee Cho

    (Energy Platform Research Center, Korea Electrotechnology Research Institute, Gwangju 61751, Republic of Korea)

  • Hyang-A Park

    (Energy Platform Research Center, Korea Electrotechnology Research Institute, Gwangju 61751, Republic of Korea)

  • Sungshin Kim

    (Department of Electrical Engineering, Pusan National University, Busan 46241, Republic of Korea)

Abstract

In recent years, battery fires have become more common owing to the increased use of lithium-ion batteries. Therefore, monitoring technology is required to detect battery anomalies because battery fires cause significant damage to systems. We used Mahalanobis distance (MD) and independent component analysis (ICA) to detect early battery faults in a real-world energy storage system (ESS). The fault types included historical data of battery overvoltage and humidity anomaly alarms generated by the system management program. These are typical preliminary symptoms of thermal runaway, the leading cause of lithium-ion battery fires. The alarms were generated by the system management program based on thresholds. If a fire occurs in an ESS, the humidity inside the ESS will increase very quickly, which means that threshold-based alarm generation methods can be risky. In addition, industrial datasets contain many outliers for various reasons, including measurement and communication errors in sensors. These outliers can lead to biased training results for models. Therefore, we used MD to remove outliers and performed fault detection based on ICA. The proposed method determines confidence limits based on statistics derived from normal samples with outliers removed, resulting in well-defined thresholds compared to existing fault detection methods. Moreover, it demonstrated the ability to detect faults earlier than the point at which alarms were generated by the system management program: 15 min earlier for battery overvoltage and 26 min earlier for humidity anomalies.

Suggested Citation

  • Seunghwan Jung & Minseok Kim & Eunkyeong Kim & Baekcheon Kim & Jinyong Kim & Kyeong-Hee Cho & Hyang-A Park & Sungshin Kim, 2024. "The Early Detection of Faults for Lithium-Ion Batteries in Energy Storage Systems Using Independent Component Analysis with Mahalanobis Distance," Energies, MDPI, vol. 17(2), pages 1-23, January.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:535-:d:1323964
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/2/535/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/2/535/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ma, Mina & Li, Xiaoyu & Gao, Wei & Sun, Jinhua & Wang, Qingsong & Mi, Chris, 2022. "Multi-fault diagnosis for series-connected lithium-ion battery pack with reconstruction-based contribution based on parallel PCA-KPCA," Applied Energy, Elsevier, vol. 324(C).
    2. Dong, Guangzhong & Wei, Jingwen & Zhang, Chenbin & Chen, Zonghai, 2016. "Online state of charge estimation and open circuit voltage hysteresis modeling of LiFePO4 battery using invariant imbedding method," Applied Energy, Elsevier, vol. 162(C), pages 163-171.
    3. Hong, Jichao & Wang, Zhenpo & Yao, Yongtao, 2019. "Fault prognosis of battery system based on accurate voltage abnormity prognosis using long short-term memory neural networks," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Olatomiwa Badmos & Andreas Kopp & Timo Bernthaler & Gerhard Schneider, 2020. "Image-based defect detection in lithium-ion battery electrode using convolutional neural networks," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 885-897, April.
    5. Ma, Mina & Wang, Yu & Duan, Qiangling & Wu, Tangqin & Sun, Jinhua & Wang, Qingsong, 2018. "Fault detection of the connection of lithium-ion power batteries in series for electric vehicles based on statistical analysis," Energy, Elsevier, vol. 164(C), pages 745-756.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Dongxu & Lyu, Chao & Yang, Dazhi & Hinds, Gareth & Ma, Kai & Xu, Shaochun & Bai, Miao, 2024. "Concurrent multi-fault diagnosis of lithium-ion battery packs using random convolution kernel transformation and Gaussian process classifier," Energy, Elsevier, vol. 306(C).
    2. Bosong Zou & Lisheng Zhang & Xiaoqing Xue & Rui Tan & Pengchang Jiang & Bin Ma & Zehua Song & Wei Hua, 2023. "A Review on the Fault and Defect Diagnosis of Lithium-Ion Battery for Electric Vehicles," Energies, MDPI, vol. 16(14), pages 1-19, July.
    3. Wei, Jingwen & Chen, Chunlin, 2021. "A multi-timescale framework for state monitoring and lifetime prognosis of lithium-ion batteries," Energy, Elsevier, vol. 229(C).
    4. Cui, Binghan & Wang, Han & Li, Renlong & Xiang, Lizhi & Zhao, Huaian & Xiao, Rang & Li, Sai & Liu, Zheng & Yin, Geping & Cheng, Xinqun & Ma, Yulin & Huo, Hua & Zuo, Pengjian & Lu, Taolin & Xie, Jingyi, 2024. "Ultra-early prediction of lithium-ion battery performance using mechanism and data-driven fusion model," Applied Energy, Elsevier, vol. 353(PA).
    5. Jinrui Nan & Bo Deng & Wanke Cao & Jianjun Hu & Yuhua Chang & Yili Cai & Zhiwei Zhong, 2022. "Big Data-Based Early Fault Warning of Batteries Combining Short-Text Mining and Grey Correlation," Energies, MDPI, vol. 15(15), pages 1-19, July.
    6. Ma, Zhikai & Huo, Qian & Wang, Wei & Zhang, Tao, 2023. "Voltage-temperature aware thermal runaway alarming framework for electric vehicles via deep learning with attention mechanism in time-frequency domain," Energy, Elsevier, vol. 278(C).
    7. Li, Yue & Chattopadhyay, Pritthi & Xiong, Sihan & Ray, Asok & Rahn, Christopher D., 2016. "Dynamic data-driven and model-based recursive analysis for estimation of battery state-of-charge," Applied Energy, Elsevier, vol. 184(C), pages 266-275.
    8. Yang, Jian & Zhang, Tiezhu & Hong, Jichao & Zhang, Hongxin & Zhao, Qinghai & Meng, Zewen, 2021. "Research on driving control strategy and Fuzzy logic optimization of a novel mechatronics-electro-hydraulic power coupling electric vehicle," Energy, Elsevier, vol. 233(C).
    9. Zhijie Duan & Luo Zhang & Lili Feng & Shuguang Yu & Zengyou Jiang & Xiaoming Xu & Jichao Hong, 2021. "Research on Economic and Operating Characteristics of Hydrogen Fuel Cell Cars Based on Real Vehicle Tests," Energies, MDPI, vol. 14(23), pages 1-19, November.
    10. Daniels, Rojo Kurian & Kumar, Vikas & Chouhan, Satyendra Singh & Prabhakar, Aneesh, 2024. "Thermal runaway fault prediction in air-cooled lithium-ion battery modules using machine learning through temperature sensors placement optimization," Applied Energy, Elsevier, vol. 355(C).
    11. Ren, Song & Sun, Jing, 2024. "Multi-fault diagnosis strategy based on a non-redundant interleaved measurement circuit and improved fuzzy entropy for the battery system," Energy, Elsevier, vol. 292(C).
    12. Ozkurt, Celil & Camci, Fatih & Atamuradov, Vepa & Odorry, Christopher, 2016. "Integration of sampling based battery state of health estimation method in electric vehicles," Applied Energy, Elsevier, vol. 175(C), pages 356-367.
    13. Xinyu Suo & Jian Liu & Licheng Dong & Chen Shengfeng & Lu Enhui & Chen Ning, 2022. "A machine vision-based defect detection system for nuclear-fuel rod groove," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1649-1663, August.
    14. Thanh-Tung Nguyen & Abdul Basit Khan & Younghwi Ko & Woojin Choi, 2020. "An Accurate State of Charge Estimation Method for Lithium Iron Phosphate Battery Using a Combination of an Unscented Kalman Filter and a Particle Filter," Energies, MDPI, vol. 13(17), pages 1-15, September.
    15. Shu, Xing & Li, Guang & Shen, Jiangwei & Lei, Zhenzhen & Chen, Zheng & Liu, Yonggang, 2020. "A uniform estimation framework for state of health of lithium-ion batteries considering feature extraction and parameters optimization," Energy, Elsevier, vol. 204(C).
    16. Qi, Kaijian & Zhang, Weigang & Zhou, Wei & Cheng, Jifu, 2022. "Integrated battery power capability prediction and driving torque regulation for electric vehicles: A reduced order MPC approach," Applied Energy, Elsevier, vol. 317(C).
    17. Ma, Mina & Li, Xiaoyu & Gao, Wei & Sun, Jinhua & Wang, Qingsong & Mi, Chris, 2022. "Multi-fault diagnosis for series-connected lithium-ion battery pack with reconstruction-based contribution based on parallel PCA-KPCA," Applied Energy, Elsevier, vol. 324(C).
    18. Sun, Chenhao & Zhou, Zhuoyu & Zeng, Xiangjun & Li, Zewen & Wang, Yuanyuan & Deng, Feng, 2022. "A multi-model-integration-based prediction methodology for the spatiotemporal distribution of vulnerabilities in integrated energy systems under the multi-type, imbalanced, and dependent input data sc," Applied Energy, Elsevier, vol. 320(C).
    19. Liu, Qiquan & Ma, Jian & Zhao, Xuan & Zhang, Kai & Meng, Dean, 2023. "Online diagnosis and prediction of power battery voltage comprehensive faults for electric vehicles based on multi-parameter characterization and improved K-means method," Energy, Elsevier, vol. 283(C).
    20. Li, Lin & Zhang, Tiezhu & Lu, Liqun & Zhang, Hongxin & Yang, Jian & Zhang, Zhen, 2023. "An energy active regulation management strategy based on driving mode recognition for electro-hydraulic hybrid vehicles," Energy, Elsevier, vol. 285(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:535-:d:1323964. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.