IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v253y2025ics0951832024005647.html
   My bibliography  Save this article

An improved industrial fault diagnosis model by integrating enhanced variational mode decomposition with sparse process monitoring method

Author

Listed:
  • Zhang, Jiaxin
  • Rangaiah, Gade Pandu
  • Dong, Lichun
  • Samavedham, Lakshminarayanan

Abstract

With the continuous development of intelligent industrial processes, the sparse principal component analysis (SPCA), as a promising process monitoring method, has been widely used in the field of industrial fault detection. However, due to the inadequacy of data preprocessing and the insufficient detection accuracy for minor faults, the SPCA models exhibit obvious limitations in dealing with the processes with dynamic and temporal features. In this study, a Harris Hawk optimization method enhanced variational mode decomposition (HHO-VMD) coupled with the sliding window optimized adaptive SPCA (SWOASPCA) method is proposed to improve the fault detection performance of the SPCA models. In the HHO-VMD-SWOASPCA method, the process data is first preprocessed by adaptively and iteratively optimizing the number of modes and penalty terms in the VMD method via the Harris Hawk Optimization (HHO) method, and then the original SPCA model is combined with the sliding window method and the weight assignment strategy to enhance the model's adaptive capability and accuracy to detect minor faults. Moreover, an improved reconstruction-based contribution (RBC) method is presented to diagnose the detected faults for determining the fault causes. The effectiveness of the proposed method is verified by its application in the industrial sugar production process.

Suggested Citation

  • Zhang, Jiaxin & Rangaiah, Gade Pandu & Dong, Lichun & Samavedham, Lakshminarayanan, 2025. "An improved industrial fault diagnosis model by integrating enhanced variational mode decomposition with sparse process monitoring method," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
  • Handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024005647
    DOI: 10.1016/j.ress.2024.110492
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024005647
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110492?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Deqiang & Liu, Chenyu & Jin, Zhenzhen & Ma, Rui & Chen, Yanjun & Shan, Sheng, 2022. "Fault diagnosis of flywheel bearing based on parameter optimization variational mode decomposition energy entropy and deep learning," Energy, Elsevier, vol. 239(PB).
    2. Ma, Mina & Li, Xiaoyu & Gao, Wei & Sun, Jinhua & Wang, Qingsong & Mi, Chris, 2022. "Multi-fault diagnosis for series-connected lithium-ion battery pack with reconstruction-based contribution based on parallel PCA-KPCA," Applied Energy, Elsevier, vol. 324(C).
    3. Qais, Mohammed H. & Hasanien, Hany M. & Alghuwainem, Saad, 2020. "Parameters extraction of three-diode photovoltaic model using computation and Harris Hawks optimization," Energy, Elsevier, vol. 195(C).
    4. Melani, Arthur Henrique de Andrade & Michalski, Miguel Angelo de Carvalho & da Silva, Renan Favarão & de Souza, Gilberto Francisco Martha, 2021. "A framework to automate fault detection and diagnosis based on moving window principal component analysis and Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    5. Nagel, Joseph B. & Rieckermann, Jörg & Sudret, Bruno, 2020. "Principal component analysis and sparse polynomial chaos expansions for global sensitivity analysis and model calibration: Application to urban drainage simulation," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    6. Wang, Wei & Lin, Mingqiang & Si, Peng & Wang, Yan & Fan, Binning, 2023. "BCMS4W-ST: On the Bi-directional Circular Multi-State System with Spatiotemporal Sliding Window for Sequential Tasks," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    7. Zhao, Shuaiyu & Duan, Yiling & Roy, Nitin & Zhang, Bin, 2024. "A deep learning methodology based on adaptive multiscale CNN and enhanced highway LSTM for industrial process fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    8. Chen, Jianli & Zhang, Liang & Li, Yanfei & Shi, Yifu & Gao, Xinghua & Hu, Yuqing, 2022. "A review of computing-based automated fault detection and diagnosis of heating, ventilation and air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    9. Li, Xin & Li, Shuhua & Wei, Dong & Si, Lei & Yu, Kun & Yan, Ke, 2024. "Dynamics simulation-driven fault diagnosis of rolling bearings using security transfer support matrix machine," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    10. Li, Gang & Hu, Jiayao & Ding, Yaping & Tang, Aimin & Ao, Jiaxing & Hu, Dalong & Liu, Yang, 2024. "A novel method for fault diagnosis of fluid end of drilling pump under complex working conditions," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    11. Zheng, Niannian & Luan, Xiaoli & Shardt, Yuri A.W. & Liu, Fei, 2024. "Dynamic-controlled principal component analysis for fault detection and automatic recovery," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    12. Wang, Chenxi & Zhang, Yuxiang & Zhao, Zhibin & Chen, Xuefeng & Hu, Jiawei, 2024. "Dynamic model-assisted transferable network for liquid rocket engine fault diagnosis using limited fault samples," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    13. Xu, Jun & Song, Jinheng & Yu, Quanfu & Kong, Fan, 2023. "Generalized distribution reconstruction based on the inversion of characteristic function curve for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    14. Wang, Wei & Fang, Chao & Wang, Yan & Li, Jin, 2022. "Reliability Modeling and Optimization of Circular Multi-State Sliding Time Window System with Sequential Demands," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jimeng & Cheng, Xing & Peng, Junling & Meng, Zong, 2022. "A new adaptive parallel resonance system based on cascaded feedback model of vibrational resonance and stochastic resonance and its application in fault detection of rolling bearings," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    2. Zhao, Shuaiyu & Duan, Yiling & Roy, Nitin & Zhang, Bin, 2024. "A deep learning methodology based on adaptive multiscale CNN and enhanced highway LSTM for industrial process fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    3. Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    4. Li, Jin-Yang & Lu, Jubin & Zhou, Hao, 2023. "Reliability analysis of structures with inerter-based isolation layer under stochastic seismic excitations," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    5. Yu, Tian & Li, Chaoshun & Huang, Jie & Xiao, Xiangqu & Zhang, Xiaoyuan & Li, Yuhong & Fu, Bitao, 2024. "ReF-DDPM: A novel DDPM-based data augmentation method for imbalanced rolling bearing fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    6. Ren, Song & Sun, Jing, 2024. "Multi-fault diagnosis strategy based on a non-redundant interleaved measurement circuit and improved fuzzy entropy for the battery system," Energy, Elsevier, vol. 292(C).
    7. Ahmed Ginidi & Sherif M. Ghoneim & Abdallah Elsayed & Ragab El-Sehiemy & Abdullah Shaheen & Attia El-Fergany, 2021. "Gorilla Troops Optimizer for Electrically Based Single and Double-Diode Models of Solar Photovoltaic Systems," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    8. Puppo, L. & Pedroni, N. & Maio, F. Di & Bersano, A. & Bertani, C. & Zio, E., 2021. "A Framework based on Finite Mixture Models and Adaptive Kriging for Characterizing Non-Smooth and Multimodal Failure Regions in a Nuclear Passive Safety System," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    9. He, Wanxin & Wang, Yiyuan & Li, Gang & Zhou, Jinhang, 2024. "A novel maximum entropy method based on the B-spline theory and the low-discrepancy sequence for complex probability distribution reconstruction," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    10. Moreira, Hugo Soeiro & Lucas de Souza Silva, João & Gomes dos Reis, Marcos Vinicios & de Bastos Mesquita, Daniel & Kikumoto de Paula, Bruno Henrique & Villalva, Marcelo Gradella, 2021. "Experimental comparative study of photovoltaic models for uniform and partially shading conditions," Renewable Energy, Elsevier, vol. 164(C), pages 58-73.
    11. Torii, André Jacomel & Novotny, Antonio André, 2021. "A priori error estimates for local reliability-based sensitivity analysis with Monte Carlo Simulation," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    12. Xia, Weifu & Wang, Yanhui & Hao, Yucheng & He, Zhichao & Yan, Kai & Zhao, Fan, 2024. "Reliability analysis for complex electromechanical multi-state systems utilizing universal generating function techniques," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    13. Dai, Menghang & Liu, Zhiliang & Wang, Jinrui & Zuo, Mingjian, 2024. "Physics-driven feature alignment combined with dynamic distribution adaptation for three-cylinder drilling pump cross-speed fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    14. Zheng, Xiaohu & Yao, Wen & Zhang, Yunyang & Zhang, Xiaoya, 2022. "Consistency regularization-based deep polynomial chaos neural network method for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    15. Long, Wen & Wu, Tiebin & Xu, Ming & Tang, Mingzhu & Cai, Shaohong, 2021. "Parameters identification of photovoltaic models by using an enhanced adaptive butterfly optimization algorithm," Energy, Elsevier, vol. 229(C).
    16. Hazem Hassan Ellithy & Adel M. Taha & Hany M. Hasanien & Mahmoud A. Attia & Adel El-Shahat & Shady H. E. Abdel Aleem, 2022. "Estimation of Parameters of Triple Diode Photovoltaic Models Using Hybrid Particle Swarm and Grey Wolf Optimization," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
    17. Jung, WoongHee & Taflanidis, Alexandros A., 2023. "Efficient global sensitivity analysis for high-dimensional outputs combining data-driven probability models and dimensionality reduction," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    18. Mohamed Abdel-Basset & Reda Mohamed & Attia El-Fergany & Mohamed Abouhawwash & S. S. Askar, 2021. "Parameters Identification of PV Triple-Diode Model Using Improved Generalized Normal Distribution Algorithm," Mathematics, MDPI, vol. 9(9), pages 1-23, April.
    19. Keshun, You & Puzhou, Wang & Peng, Huang & Yingkui, Gu, 2025. "A sound-vibration physical-information fusion constraint-guided deep learning method for rolling bearing fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    20. Lin, Yu-Hsiu & Shen, Ting-Yu, 2023. "Novel cell screening and prognosing based on neurocomputing-based multiday-ahead time-series forecasting for predictive maintenance of battery modules in frequency regulation-energy storage systems," Applied Energy, Elsevier, vol. 351(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024005647. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.