IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v306y2024ics0360544224022941.html
   My bibliography  Save this article

Co-estimation of state of charge and capacity for battery packs in real electric vehicles with few representative cells and physics-informed machine learning

Author

Listed:
  • Wang, Qiao
  • Ye, Min
  • Li, Bin
  • Lian, Gaoqi
  • Li, Yan

Abstract

Accurate state of charge and capacity estimation is crucial for battery packs in electric vehicles. However, the cell inconsistencies, computational complexity, temperature variations, and complex drive cycles all pose great challenges for the state of charge and capacity estimation of battery packs in field operation. This work aims to develop a framework for state of charge and capacity estimation of battery packs in real electric vehicles with few representative cells and physics-informed machine learning. By analyzing the battery data using a quantity-capacity diagram, the representative cells within the pack can be identified based on the relaxation terminal voltage online. Leveraging the physics information of batteries, the state of charge of the representative cells are monitored in a closed-loop manner. Then, state of charge and available capacity of battery pack are achieved based on the state of only two representative cells. We validate our method by evaluating its performance on the datasets of battery pack in real electric vehicles across different temperatures and drive cycles. The improvements of 83.60 % and 85.13 % in average root mean square errors can be achieved at real drive cycles under 30 °C and 15 °C. The results demonstrate that accurate and robust state estimation of battery packs can be achieved in field operations by utilizing the battery data of only two cells in laboratory conditions.

Suggested Citation

  • Wang, Qiao & Ye, Min & Li, Bin & Lian, Gaoqi & Li, Yan, 2024. "Co-estimation of state of charge and capacity for battery packs in real electric vehicles with few representative cells and physics-informed machine learning," Energy, Elsevier, vol. 306(C).
  • Handle: RePEc:eee:energy:v:306:y:2024:i:c:s0360544224022941
    DOI: 10.1016/j.energy.2024.132520
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224022941
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132520?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lian, Gaoqi & Ye, Min & Wang, Qiao & Li, Yan & Xia, Baozhou & Zhang, Jiale & Xu, Xinxin, 2024. "Robust state-of-charge estimation for LiFePO4 batteries under wide varying temperature environments," Energy, Elsevier, vol. 293(C).
    2. Wang, Qiao & Ye, Min & Wei, Meng & Lian, Gaoqi & Li, Yan, 2023. "Deep convolutional neural network based closed-loop SOC estimation for lithium-ion batteries in hierarchical scenarios," Energy, Elsevier, vol. 263(PB).
    3. Ouyang, Minggao & Gao, Shang & Lu, Languang & Feng, Xuning & Ren, Dongsheng & Li, Jianqiu & Zheng, Yuejiu & Shen, Ping, 2016. "Determination of the battery pack capacity considering the estimation error using a Capacity–Quantity diagram," Applied Energy, Elsevier, vol. 177(C), pages 384-392.
    4. Zhong, Liang & Zhang, Chenbin & He, Yao & Chen, Zonghai, 2014. "A method for the estimation of the battery pack state of charge based on in-pack cells uniformity analysis," Applied Energy, Elsevier, vol. 113(C), pages 558-564.
    5. Kurucan, Mehmet & Özbaltan, Mete & Yetgin, Zeki & Alkaya, Alkan, 2024. "Applications of artificial neural network based battery management systems: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    6. Wang, Qiao & Ye, Min & Cai, Xue & Sauer, Dirk Uwe & Li, Weihan, 2023. "Transferable data-driven capacity estimation for lithium-ion batteries with deep learning: A case study from laboratory to field applications," Applied Energy, Elsevier, vol. 350(C).
    7. Jiangong Zhu & Yixiu Wang & Yuan Huang & R. Bhushan Gopaluni & Yankai Cao & Michael Heere & Martin J. Mühlbauer & Liuda Mereacre & Haifeng Dai & Xinhua Liu & Anatoliy Senyshyn & Xuezhe Wei & Michael K, 2022. "Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Zhang, Shuzhi & Jiang, Shiyong & Wang, Hongxia & Zhang, Xiongwen, 2022. "A novel dual time-scale voltage sensor fault detection and isolation method for series-connected lithium-ion battery pack," Applied Energy, Elsevier, vol. 322(C).
    9. Li, Changlong & Cui, Naxin & Wang, Chunyu & Zhang, Chenghui, 2021. "Reduced-order electrochemical model for lithium-ion battery with domain decomposition and polynomial approximation methods," Energy, Elsevier, vol. 221(C).
    10. Wang, Shunli & Fan, Yongcun & Jin, Siyu & Takyi-Aninakwa, Paul & Fernandez, Carlos, 2023. "Improved anti-noise adaptive long short-term memory neural network modeling for the robust remaining useful life prediction of lithium-ion batteries," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    11. Wang, Qiao & Ye, Min & Wei, Meng & Lian, Gaoqi & Li, Yan, 2023. "Random health indicator and shallow neural network based robust capacity estimation for lithium-ion batteries with different fast charging protocols," Energy, Elsevier, vol. 271(C).
    12. Gavin Harper & Roberto Sommerville & Emma Kendrick & Laura Driscoll & Peter Slater & Rustam Stolkin & Allan Walton & Paul Christensen & Oliver Heidrich & Simon Lambert & Andrew Abbott & Karl Ryder & L, 2019. "Recycling lithium-ion batteries from electric vehicles," Nature, Nature, vol. 575(7781), pages 75-86, November.
    13. Clare P. Grey & David S. Hall, 2020. "Prospects for lithium-ion batteries and beyond—a 2030 vision," Nature Communications, Nature, vol. 11(1), pages 1-4, December.
    14. Li, Xiaoyu & Xu, Jianhua & Hong, Jianxun & Tian, Jindong & Tian, Yong, 2021. "State of energy estimation for a series-connected lithium-ion battery pack based on an adaptive weighted strategy," Energy, Elsevier, vol. 214(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gu, Xubo & Bai, Hanyu & Cui, Xiaofan & Zhu, Juner & Zhuang, Weichao & Li, Zhaojian & Hu, Xiaosong & Song, Ziyou, 2024. "Challenges and opportunities for second-life batteries: Key technologies and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    2. Qi, Wei & Qin, Wenhu & Yun, Zhonghua, 2024. "Closed-loop state of charge estimation of Li-ion batteries based on deep learning and robust adaptive Kalman filter," Energy, Elsevier, vol. 307(C).
    3. Lyu, Guangzheng & Zhang, Heng & Miao, Qiang, 2023. "Parallel State Fusion LSTM-based Early-cycle Stage Lithium-ion Battery RUL Prediction Under Lebesgue Sampling Framework," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    4. Wang, Shuhui & Wang, Zhenpo & Cheng, Ximing & Zhang, Zhaosheng, 2023. "A double-layer fault diagnosis strategy for electric vehicle batteries based on Gaussian mixture model," Energy, Elsevier, vol. 281(C).
    5. Hong, Jichao & Zhang, Huaqin & Zhang, Xinyang & Yang, Haixu & Chen, Yingjie & Wang, Facheng & Huang, Zhongguo & Wang, Wei, 2024. "Online accurate voltage prediction with sparse data for the whole life cycle of Lithium-ion batteries in electric vehicles," Applied Energy, Elsevier, vol. 369(C).
    6. Fujin Wang & Zhi Zhai & Zhibin Zhao & Yi Di & Xuefeng Chen, 2024. "Physics-informed neural network for lithium-ion battery degradation stable modeling and prognosis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Wang, Qiao & Ye, Min & Wei, Meng & Lian, Gaoqi & Li, Yan, 2023. "Random health indicator and shallow neural network based robust capacity estimation for lithium-ion batteries with different fast charging protocols," Energy, Elsevier, vol. 271(C).
    8. Wang, Qiao & Ye, Min & Cai, Xue & Sauer, Dirk Uwe & Li, Weihan, 2023. "Transferable data-driven capacity estimation for lithium-ion batteries with deep learning: A case study from laboratory to field applications," Applied Energy, Elsevier, vol. 350(C).
    9. Wei, Meng & Ye, Min & Zhang, Chuanwei & Li, Yan & Zhang, Jiale & Wang, Qiao, 2023. "A multi-scale learning approach for remaining useful life prediction of lithium-ion batteries based on variational mode decomposition and Monte Carlo sampling," Energy, Elsevier, vol. 283(C).
    10. Wei, Meng & Ye, Min & Zhang, Chuanwei & Wang, Qiao & Lian, Gaoqi & Xia, Baozhou, 2024. "Integrating mechanism and machine learning based capacity estimation for LiFePO4 batteries under slight overcharge cycling," Energy, Elsevier, vol. 296(C).
    11. Li, Yuanmao & Liu, Guixiong & Deng, Wei & Li, Zuyu, 2024. "Comparative study on parameter identification of an electrochemical model for lithium-ion batteries via meta-heuristic methods," Applied Energy, Elsevier, vol. 367(C).
    12. Deng, Zhongwei & Xu, Le & Liu, Hongao & Hu, Xiaosong & Duan, Zhixuan & Xu, Yu, 2023. "Prognostics of battery capacity based on charging data and data-driven methods for on-road vehicles," Applied Energy, Elsevier, vol. 339(C).
    13. Fan, Wenjun & Zhu, Jiangong & Qiao, Dongdong & Jiang, Bo & Wang, Xueyuan & Wei, Xuezhe & Dai, Haifeng, 2024. "Prediction of nonlinear degradation knee-point and remaining useful life for lithium-ion batteries using relaxation voltage," Energy, Elsevier, vol. 294(C).
    14. Tongrui Zhang & Ran Li & Yongqin Zhou, 2023. "Battery Fault Diagnosis Method Based on Online Least Squares Support Vector Machine," Energies, MDPI, vol. 16(21), pages 1-17, October.
    15. Cui, Binghan & Wang, Han & Li, Renlong & Xiang, Lizhi & Zhao, Huaian & Xiao, Rang & Li, Sai & Liu, Zheng & Yin, Geping & Cheng, Xinqun & Ma, Yulin & Huo, Hua & Zuo, Pengjian & Lu, Taolin & Xie, Jingyi, 2024. "Ultra-early prediction of lithium-ion battery performance using mechanism and data-driven fusion model," Applied Energy, Elsevier, vol. 353(PA).
    16. Guido Busca, 2024. "Critical Aspects of Energetic Transition Technologies and the Roles of Materials Chemistry and Engineering," Energies, MDPI, vol. 17(14), pages 1-32, July.
    17. Hu, Lin & Hu, Xiaosong & Che, Yunhong & Feng, Fei & Lin, Xianke & Zhang, Zhiyong, 2020. "Reliable state of charge estimation of battery packs using fuzzy adaptive federated filtering," Applied Energy, Elsevier, vol. 262(C).
    18. Li, Xiaoyu & Xu, Jianhua & Hong, Jianxun & Tian, Jindong & Tian, Yong, 2021. "State of energy estimation for a series-connected lithium-ion battery pack based on an adaptive weighted strategy," Energy, Elsevier, vol. 214(C).
    19. Fu, En & Hu, Yanyan & Peng, Kaixiang & Chu, Yuxin, 2024. "Supervised contrastive learning based dual-mixer model for Remaining Useful Life prediction," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    20. Zhang, Jianping & Zhang, Yinjie & Fu, Jian & Zhao, Dawen & Liu, Ping & Zhang, Zhiwei, 2024. "Capacity fading knee-point recognition method and life prediction for lithium-ion batteries using segmented capacity degradation model," Reliability Engineering and System Safety, Elsevier, vol. 251(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:306:y:2024:i:c:s0360544224022941. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.