IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v304y2024ics0360544224018395.html
   My bibliography  Save this article

Multi-scenario surface temperature estimation in lithium-ion batteries with transfer learning and LGT augmentation

Author

Listed:
  • You, Yuqiang
  • Lin, Mingqiang
  • Meng, Jinhao
  • Wu, Ji
  • Wang, Wei

Abstract

The State of Temperature (SOT) plays a crucial role in ensuring the safety and reliability of lithium-ion batteries, as well as the stability of electric vehicles (Evs). Recently, data-driven methods for lithium-ion battery temperature estimation have often obtained short-term estimation information in a single scenario. To alleviate the above issues, this paper proposes a method for estimating the surface temperature of lithium-ion batteries based on Local and Global Trend (LGT) data augmentation and Long Short-Term Memory (LSTM) model transfer. Initially, voltage and current data are processed using two types of filtering methods to reduce noise while preserving the fluctuating characteristics of the original data. Differential features are subsequently extracted from the polynomially filtered curves. Then all the data, including the filtered data and the features are fed into the LGT data augmentation algorithm, followed by the use of an LSTM transferable model to estimate the surface temperature of the target battery. Furthermore, the method is tested on both laboratory datasets and datasets with real driving conditions, covering a wide range of environmental temperatures and driving scenarios typical of EVs. The experimental results demonstrate that retraining with only the first 30 % of the target battery's data yields effective SOT estimation results.

Suggested Citation

  • You, Yuqiang & Lin, Mingqiang & Meng, Jinhao & Wu, Ji & Wang, Wei, 2024. "Multi-scenario surface temperature estimation in lithium-ion batteries with transfer learning and LGT augmentation," Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224018395
    DOI: 10.1016/j.energy.2024.132065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224018395
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224018395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.