IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i20p5018-d1495229.html
   My bibliography  Save this article

Optimizing S Chemical Looping Combustion with Cu-Fe Combined Oxygen Carriers: Performance and Mechanistic Insights

Author

Listed:
  • Lihuai Peng

    (School of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China)

  • Min Zheng

    (School of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China)

Abstract

This study focuses on the S-to-H 2 SO 4 industry by investigating the chemical looping combustion (CLC) process utilizing Fe-based and Cu-based oxygen carriers (OCs), which are widely applied in CLC technology. The primary objective is to conduct combined CLC reactions of these two metal carriers in a three-zone temperature tube furnace, aiming to achieve a higher SO 2 yield than what is attainable by reacting a single metal carrier with S. The investigation reveals promising industrial applications, offering potential benefits in terms of reducing equipment costs, enhancing energy efficiency, and lowering the emissions of the H 2 SO 4 production industry. Through a series of experiments, the study examines the effects of reaction temperature and material molar ratios on SO 2 generation. The solid reaction products were characterized using X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS), and X-ray photoelectron spectroscopy (XPS). The experimental results indicate that the combined Cu-based and Fe-based OCs exhibit a higher SO 2 yield during the reduction stage compared to using either Fe-based or Cu-based OCs independently. Under optimal conditions, with a carrier gas flow rate of 300 mL/min, an Fe 2 O 3 /S molar ratio of 6:1 in the second temperature zone, and a reaction temperature of 900 °C, the total SO 2 yield in the third temperature zone reached approximately 85%. This was achieved at a reaction temperature of 850 °C, with an Fe 2 O 3 /S molar ratio of 6:1 in the first half of the zone and a CuO/S molar ratio of 12:1 in the second half of the zone. SEM-EDS analysis further revealed that the combined OCs showed no significant signs of agglomeration or sintering after 10 cycles of the reaction. However, Cu-based carrier particles increased in size by 50%, while Fe-based carrier particles remained relatively stable. Additionally, the low mass-to-atom ratio of S on the surface of OCs after the cyclic reaction suggests that the reduced-state OCs can be fully oxidized and regenerated following the release of SO 2 during oxidation.

Suggested Citation

  • Lihuai Peng & Min Zheng, 2024. "Optimizing S Chemical Looping Combustion with Cu-Fe Combined Oxygen Carriers: Performance and Mechanistic Insights," Energies, MDPI, vol. 17(20), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:20:p:5018-:d:1495229
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/20/5018/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/20/5018/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adánez-Rubio, Iñaki & Abad, Alberto & Gayán, Pilar & García-Labiano, Francisco & de Diego, Luis F. & Adánez, Juan, 2014. "The fate of sulphur in the Cu-based Chemical Looping with Oxygen Uncoupling (CLOU) Process," Applied Energy, Elsevier, vol. 113(C), pages 1855-1862.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel C. Bayham & Andrew Tong & Mandar Kathe & Liang-Shih Fan, 2016. "Chemical looping technology for energy and chemical production," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(2), pages 216-241, March.
    2. Imtiaz, Qasim & Broda, Marcin & Müller, Christoph R., 2014. "Structure–property relationship of co-precipitated Cu-rich, Al2O3- or MgAl2O4-stabilized oxygen carriers for chemical looping with oxygen uncoupling (CLOU)," Applied Energy, Elsevier, vol. 119(C), pages 557-565.
    3. Abad, Alberto & Adánez, Juan & Gayán, Pilar & de Diego, Luis F. & García-Labiano, Francisco & Sprachmann, Gerald, 2015. "Conceptual design of a 100MWth CLC unit for solid fuel combustion," Applied Energy, Elsevier, vol. 157(C), pages 462-474.
    4. Zhang, Yongliang & Jin, Bo & Zou, Xixian & Zhao, Haibo, 2016. "A clean coal utilization technology based on coal pyrolysis and chemical looping with oxygen uncoupling: Principle and experimental validation," Energy, Elsevier, vol. 98(C), pages 181-189.
    5. Abad, Alberto & Pérez-Vega, Raúl & de Diego, Luis F. & García-Labiano, Francisco & Gayán, Pilar & Adánez, Juan, 2015. "Design and operation of a 50kWth Chemical Looping Combustion (CLC) unit for solid fuels," Applied Energy, Elsevier, vol. 157(C), pages 295-303.
    6. Bayham, Samuel & McGiveron, Omar & Tong, Andrew & Chung, Elena & Kathe, Mandar & Wang, Dawei & Zeng, Liang & Fan, Liang-Shih, 2015. "Parametric and dynamic studies of an iron-based 25-kWth coal direct chemical looping unit using sub-bituminous coal," Applied Energy, Elsevier, vol. 145(C), pages 354-363.
    7. Adánez-Rubio, Iñaki & Abad, Alberto & Gayán, Pilar & García-Labiano, Francisco & de Diego, Luis F. & Adánez, Juan, 2017. "Coal combustion with a spray granulated Cu-Mn mixed oxide for the Chemical Looping with Oxygen Uncoupling (CLOU) process," Applied Energy, Elsevier, vol. 208(C), pages 561-570.
    8. Chung, Cheng & Pottimurthy, Yaswanth & Xu, Mingyuan & Hsieh, Tien-Lin & Xu, Dikai & Zhang, Yitao & Chen, Yu-Yen & He, Pengfei & Pickarts, Marshall & Fan, Liang-Shih & Tong, Andrew, 2017. "Fate of sulfur in coal-direct chemical looping systems," Applied Energy, Elsevier, vol. 208(C), pages 678-690.
    9. Hamers, H.P. & Romano, M.C. & Spallina, V. & Chiesa, P. & Gallucci, F. & van Sint Annaland, M., 2015. "Boosting the IGCLC process efficiency by optimizing the desulfurization step," Applied Energy, Elsevier, vol. 157(C), pages 422-432.
    10. García-Labiano, F. & de Diego, L.F. & Gayán, P. & Abad, A. & Cabello, A. & Adánez, J. & Sprachmann, G., 2014. "Energy exploitation of acid gas with high H2S content by means of a chemical looping combustion system," Applied Energy, Elsevier, vol. 136(C), pages 242-249.
    11. Wang, Zhe & Fan, Weiyu & Zhang, Guangqing & Dong, Shuang, 2016. "Exergy analysis of methane cracking thermally coupled with chemical looping combustion for hydrogen production," Applied Energy, Elsevier, vol. 168(C), pages 1-12.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:20:p:5018-:d:1495229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.