IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v208y2017icp678-690.html
   My bibliography  Save this article

Fate of sulfur in coal-direct chemical looping systems

Author

Listed:
  • Chung, Cheng
  • Pottimurthy, Yaswanth
  • Xu, Mingyuan
  • Hsieh, Tien-Lin
  • Xu, Dikai
  • Zhang, Yitao
  • Chen, Yu-Yen
  • He, Pengfei
  • Pickarts, Marshall
  • Fan, Liang-Shih
  • Tong, Andrew

Abstract

The fate of sulfur in the coal-direct chemical looping system was investigated in the sub-pilot reactor system. The sulfur balance was successfully closed during the injection of high sulfur coal. More than 69% of the total amount of atomic sulfur in coal was released as SO2 and H2S from the reducer flue gas stream while less than 5% was emitted as SO2 from the combustor spent air. The remaining atomic sulfur was retained in coal ash as inorganic sulfur compounds. The finding suggests an acid gas removal system targeting both H2S and SO2 is required to meet the recommended quality of CO2 stream for sequestration and transportation. Using the determined ratio of SO2 and H2S, a properly designed Claus plant can enable the recovery of elemental sulfur as a value-added byproduct. The combustor spent air was found to comply with the US EPA sulfur emission regulation and can be released to the atmosphere without a costly acid removal system. The relationship between the sulfur and carbon capture efficiencies was established experimentally and was found to be proportional to each other throughout the experiment at a slope of 0.8 below 93% of carbon capture efficiency and near 1 above 93%. This was attributed to the delayed release of organic sulfur during incomplete char gasification in the reducer. The finding affirms the effectiveness of the counter-current moving bed design for minimizing the amount of carbon and sulfur emission in the combustor spent air with an average carbon and sulfur capture efficiency of 96.5 and 95%, respectively. Sulfur deposition on the iron based oxygen carriers did not affect the system performance, and complete removal of deposited sulfur was observed during oxidation in a thermogravimetric analyzer. Compared with chemical looping systems using circulating fluidized bed configuration, the use of a moving bed reducer has the additional benefit of minimizing slippage of char into the combustor due to the use of large oxygen carrier; resulting in lower sulfur emission in the combustor spent air. The findings demonstrate the robustness of the coal-direct chemical looping system to handle high sulfur coal without a complicated acid gas cleaning scheme or severe performance penalties.

Suggested Citation

  • Chung, Cheng & Pottimurthy, Yaswanth & Xu, Mingyuan & Hsieh, Tien-Lin & Xu, Dikai & Zhang, Yitao & Chen, Yu-Yen & He, Pengfei & Pickarts, Marshall & Fan, Liang-Shih & Tong, Andrew, 2017. "Fate of sulfur in coal-direct chemical looping systems," Applied Energy, Elsevier, vol. 208(C), pages 678-690.
  • Handle: RePEc:eee:appene:v:208:y:2017:i:c:p:678-690
    DOI: 10.1016/j.apenergy.2017.09.079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917313612
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.09.079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lyngfelt, Anders, 2014. "Chemical-looping combustion of solid fuels – Status of development," Applied Energy, Elsevier, vol. 113(C), pages 1869-1873.
    2. Ishida, M. & Zheng, D. & Akehata, T., 1987. "Evaluation of a chemical-looping-combustion power-generation system by graphic exergy analysis," Energy, Elsevier, vol. 12(2), pages 147-154.
    3. Adair, Sarah K. & Hoppock, David C. & Monast, Jonas J., 2014. "New Source Review and coal plant efficiency gains: How new and forthcoming air regulations affect outcomes," Energy Policy, Elsevier, vol. 70(C), pages 183-192.
    4. Adánez-Rubio, Iñaki & Abad, Alberto & Gayán, Pilar & García-Labiano, Francisco & de Diego, Luis F. & Adánez, Juan, 2014. "The fate of sulphur in the Cu-based Chemical Looping with Oxygen Uncoupling (CLOU) Process," Applied Energy, Elsevier, vol. 113(C), pages 1855-1862.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bayham, Samuel & McGiveron, Omar & Tong, Andrew & Chung, Elena & Kathe, Mandar & Wang, Dawei & Zeng, Liang & Fan, Liang-Shih, 2015. "Parametric and dynamic studies of an iron-based 25-kWth coal direct chemical looping unit using sub-bituminous coal," Applied Energy, Elsevier, vol. 145(C), pages 354-363.
    2. Samuel C. Bayham & Andrew Tong & Mandar Kathe & Liang-Shih Fan, 2016. "Chemical looping technology for energy and chemical production," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(2), pages 216-241, March.
    3. Medrano, J.A. & Potdar, I. & Melendez, J. & Spallina, V. & Pacheco-Tanaka, D.A. & van Sint Annaland, M. & Gallucci, F., 2018. "The membrane-assisted chemical looping reforming concept for efficient H2 production with inherent CO2 capture: Experimental demonstration and model validation," Applied Energy, Elsevier, vol. 215(C), pages 75-86.
    4. Hsieh, Tien-Lin & Xu, Dikai & Zhang, Yitao & Nadgouda, Sourabh & Wang, Dawei & Chung, Cheng & Pottimurphy, Yaswanth & Guo, Mengqing & Chen, Yu-Yen & Xu, Mingyuan & He, Pengfei & Fan, Liang-Shih & Tong, 2018. "250 kWth high pressure pilot demonstration of the syngas chemical looping system for high purity H2 production with CO2 capture," Applied Energy, Elsevier, vol. 230(C), pages 1660-1672.
    5. Lin, Junjie & Luo, Kun & Wang, Shuai & Sun, Liyan & Fan, Jianren, 2022. "Particle-scale study of coal-direct chemical looping combustion (CLC)," Energy, Elsevier, vol. 250(C).
    6. Abad, Alberto & Adánez, Juan & Gayán, Pilar & de Diego, Luis F. & García-Labiano, Francisco & Sprachmann, Gerald, 2015. "Conceptual design of a 100MWth CLC unit for solid fuel combustion," Applied Energy, Elsevier, vol. 157(C), pages 462-474.
    7. Xu, Lei & Sun, Hongming & Li, Zhenshan & Cai, Ningsheng, 2016. "Experimental study of copper modified manganese ores as oxygen carriers in a dual fluidized bed reactor," Applied Energy, Elsevier, vol. 162(C), pages 940-947.
    8. Abad, Alberto & Pérez-Vega, Raúl & de Diego, Luis F. & García-Labiano, Francisco & Gayán, Pilar & Adánez, Juan, 2015. "Design and operation of a 50kWth Chemical Looping Combustion (CLC) unit for solid fuels," Applied Energy, Elsevier, vol. 157(C), pages 295-303.
    9. Zhang, Jinzhi & He, Tao & Wang, Zhiqi & Zhu, Min & Zhang, Ke & Li, Bin & Wu, Jinhu, 2017. "The search of proper oxygen carriers for chemical looping partial oxidation of carbon," Applied Energy, Elsevier, vol. 190(C), pages 1119-1125.
    10. Medrano, J.A. & Hamers, H.P. & Williams, G. & van Sint Annaland, M. & Gallucci, F., 2015. "NiO/CaAl2O4 as active oxygen carrier for low temperature chemical looping applications," Applied Energy, Elsevier, vol. 158(C), pages 86-96.
    11. Siriwardane, Ranjani & Benincosa, William & Riley, Jarrett & Tian, Hanjing & Richards, George, 2016. "Investigation of reactions in a fluidized bed reactor during chemical looping combustion of coal/steam with copper oxide-iron oxide-alumina oxygen carrier," Applied Energy, Elsevier, vol. 183(C), pages 1550-1564.
    12. Basavaraja, R.J. & Jayanti, S., 2015. "Viability of fuel switching of a gas-fired power plant operating in chemical looping combustion mode," Energy, Elsevier, vol. 81(C), pages 213-221.
    13. Ma, Jinchen & Zhao, Haibo & Tian, Xin & Wei, Yijie & Rajendran, Sharmen & Zhang, Yongliang & Bhattacharya, Sankar & Zheng, Chuguang, 2015. "Chemical looping combustion of coal in a 5kWth interconnected fluidized bed reactor using hematite as oxygen carrier," Applied Energy, Elsevier, vol. 157(C), pages 304-313.
    14. Lucia Blas & Patrick Dutournié & Mejdi Jeguirim & Ludovic Josien & David Chiche & Stephane Bertholin & Arnold Lambert, 2017. "Numerical Modeling of Oxygen Carrier Performances (NiO/NiAl 2 O 4 ) for Chemical-Looping Combustion," Energies, MDPI, vol. 10(7), pages 1, June.
    15. Pavelka, Michal & Klika, Václav & Vágner, Petr & Maršík, František, 2015. "Generalization of exergy analysis," Applied Energy, Elsevier, vol. 137(C), pages 158-172.
    16. Chen, Liangyong & Bao, Jinhua & Kong, Liang & Combs, Megan & Nikolic, Heather S. & Fan, Zhen & Liu, Kunlei, 2016. "The direct solid-solid reaction between coal char and iron-based oxygen carrier and its contribution to solid-fueled chemical looping combustion," Applied Energy, Elsevier, vol. 184(C), pages 9-18.
    17. Emodi, Nnaemeka Vincent & Boo, Kyung-Jin, 2015. "Sustainable energy development in Nigeria: Current status and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 356-381.
    18. Kang, Dohyung & Lim, Hyun Suk & Lee, Minbeom & Lee, Jae W., 2018. "Syngas production on a Ni-enhanced Fe2O3/Al2O3 oxygen carrier via chemical looping partial oxidation with dry reforming of methane," Applied Energy, Elsevier, vol. 211(C), pages 174-186.
    19. Zhang, Yitao & Wang, Dawei & Pottimurthy, Yaswanth & Kong, Fanhe & Hsieh, Tien-Lin & Sakadjian, Bartev & Chung, Cheng & Park, Cody & Xu, Dikai & Bao, Jinhua & Velazquez-Vargas, Luis & Guo, Mengqing & , 2021. "Coal direct chemical looping process: 250 kW pilot-scale testing for power generation and carbon capture," Applied Energy, Elsevier, vol. 282(PA).
    20. Bhavsar, Saurabh & Isenberg, Natalie & More, Amey & Veser, Götz, 2016. "Lanthana-doped ceria as active support for oxygen carriers in chemical looping combustion," Applied Energy, Elsevier, vol. 168(C), pages 236-247.

    More about this item

    Keywords

    CO2 capture; Sulfur; Coal; Chemical looping;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:208:y:2017:i:c:p:678-690. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.