IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v214y2021ics0360544220319563.html
   My bibliography  Save this article

Impact of thermal masses on the peak load in district heating systems

Author

Listed:
  • Guelpa, Elisa

Abstract

During district heating operations, part of the heat supplied to the network is used to increase the temperature of the various components (e.g. transport and distribution networks, heat exchangers installed in the substations, heating circuits and heating devices in buildings). The mass of these components acts as a thermal storage, storing heat when their temperature increases and releasing heat when they cool down. The impact may become significant, especially during shutdown or setback. In this paper, the components are analyzed in order to estimate the impact of their thermal capacity on the district heating demand. This provides a clear image of the additional supply used to heat the other thermal masses, that can be managed differently since partially independent from the indoor temperature. Results show that in the case study analyzed, i.e. large system mainly switched off during night, the heat absorbed by the thermal masses corresponds to the 4% of the heat supplied during the entire day and 70% of the heat provided during the peak. The various thermal masses affect the extra heat absorbed to a similar extent (except for radiators). Results provide a clue that proper management of thermal masses for energy saving might be considered.

Suggested Citation

  • Guelpa, Elisa, 2021. "Impact of thermal masses on the peak load in district heating systems," Energy, Elsevier, vol. 214(C).
  • Handle: RePEc:eee:energy:v:214:y:2021:i:c:s0360544220319563
    DOI: 10.1016/j.energy.2020.118849
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220319563
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118849?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leśko, Michał & Bujalski, Wojciech & Futyma, Kamil, 2018. "Operational optimization in district heating systems with the use of thermal energy storage," Energy, Elsevier, vol. 165(PA), pages 902-915.
    2. Gadd, Henrik & Werner, Sven, 2013. "Daily heat load variations in Swedish district heating systems," Applied Energy, Elsevier, vol. 106(C), pages 47-55.
    3. Lund, Henrik, 2018. "Renewable heating strategies and their consequences for storage and grid infrastructures comparing a smart grid to a smart energy systems approach," Energy, Elsevier, vol. 151(C), pages 94-102.
    4. Turski, Michał & Nogaj, Kinga & Sekret, Robert, 2019. "The use of a PCM heat accumulator to improve the efficiency of the district heating substation," Energy, Elsevier, vol. 187(C).
    5. Winterscheid, Carlo & Dalenbäck, Jan-Olof & Holler, Stefan, 2017. "Integration of solar thermal systems in existing district heating systems," Energy, Elsevier, vol. 137(C), pages 579-585.
    6. Gu, Wei & Wang, Jun & Lu, Shuai & Luo, Zhao & Wu, Chenyu, 2017. "Optimal operation for integrated energy system considering thermal inertia of district heating network and buildings," Applied Energy, Elsevier, vol. 199(C), pages 234-246.
    7. Perpar, Matjaz & Rek, Zlatko & Bajric, Suvad & Zun, Iztok, 2012. "Soil thermal conductivity prediction for district heating pre-insulated pipeline in operation," Energy, Elsevier, vol. 44(1), pages 197-210.
    8. Barzin, Reza & Chen, John J.J. & Young, Brent R. & Farid, Mohammed M., 2015. "Peak load shifting with energy storage and price-based control system," Energy, Elsevier, vol. 92(P3), pages 505-514.
    9. Carotenuto, Alberto & Figaj, Rafal Damian & Vanoli, Laura, 2017. "A novel solar-geothermal district heating, cooling and domestic hot water system: Dynamic simulation and energy-economic analysis," Energy, Elsevier, vol. 141(C), pages 2652-2669.
    10. Dominković, D.F. & Gianniou, P. & Münster, M. & Heller, A. & Rode, C., 2018. "Utilizing thermal building mass for storage in district heating systems: Combined building level simulations and system level optimization," Energy, Elsevier, vol. 153(C), pages 949-966.
    11. Kensby, Johan & Trüschel, Anders & Dalenbäck, Jan-Olof, 2015. "Potential of residential buildings as thermal energy storage in district heating systems – Results from a pilot test," Applied Energy, Elsevier, vol. 137(C), pages 773-781.
    12. Werner, Sven, 2017. "International review of district heating and cooling," Energy, Elsevier, vol. 137(C), pages 617-631.
    13. Brand, Marek & Thorsen, Jan Eric & Svendsen, Svend, 2012. "Numerical modelling and experimental measurements for a low-temperature district heating substation for instantaneous preparation of DHW with respect to service pipes," Energy, Elsevier, vol. 41(1), pages 392-400.
    14. Luthander, Rasmus & Widén, Joakim & Munkhammar, Joakim & Lingfors, David, 2016. "Self-consumption enhancement and peak shaving of residential photovoltaics using storage and curtailment," Energy, Elsevier, vol. 112(C), pages 221-231.
    15. Vandermeulen, Annelies & van der Heijde, Bram & Helsen, Lieve, 2018. "Controlling district heating and cooling networks to unlock flexibility: A review," Energy, Elsevier, vol. 151(C), pages 103-115.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stanislav Chicherin & Andrey Zhuikov & Lyazzat Junussova, 2023. "District Heating for Poorly Insulated Residential Buildings—Comparing Results of Visual Study, Thermography, and Modeling," Sustainability, MDPI, vol. 15(20), pages 1-19, October.
    2. Skiba, Marta & Mrówczyńska, Maria & Sztubecka, Małgorzata & Bazan-Krzywoszańska, Anna & Kazak, Jan K. & Leśniak, Agnieszka & Janowiec, Filip, 2021. "Probability estimation of the city’s energy efficiency improvement as a result of using the phase change materials in heating networks," Energy, Elsevier, vol. 228(C).
    3. Chicherin, Stanislav & Anvari-Moghaddam, Amjad, 2021. "Adjusting heat demands using the operational data of district heating systems," Energy, Elsevier, vol. 235(C).
    4. Chicherin, Stanislav & Starikov, Aleksander & Zhuikov, Andrey, 2022. "Justifying network reconstruction when switching to low temperature district heating," Energy, Elsevier, vol. 248(C).
    5. Benakopoulos, Theofanis & Vergo, William & Tunzi, Michele & Salenbien, Robbe & Kolarik, Jakub & Svendsen, Svend, 2022. "Energy and cost savings with continuous low temperature heating versus intermittent heating of an office building with district heating," Energy, Elsevier, vol. 252(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
    3. Vandermeulen, Annelies & Van Oevelen, Tijs & van der Heijde, Bram & Helsen, Lieve, 2020. "A simulation-based evaluation of substation models for network flexibility characterisation in district heating networks," Energy, Elsevier, vol. 201(C).
    4. Guelpa, Elisa & Verda, Vittorio, 2021. "Demand response and other demand side management techniques for district heating: A review," Energy, Elsevier, vol. 219(C).
    5. Wandong Zheng & Jay J. Hennessy & Hailong Li, 2020. "Reducing renewable power curtailment and CO2 emissions in China through district heating storage," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(1), January.
    6. Dmytro Romanchenko & Emil Nyholm & Mikael Odenberger & Filip Johnsson, 2019. "Flexibility Potential of Space Heating Demand Response in Buildings for District Heating Systems," Energies, MDPI, vol. 12(15), pages 1-23, July.
    7. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    8. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    9. Østergaard, Poul Alberg & Andersen, Anders N., 2021. "Variable taxes promoting district heating heat pump flexibility," Energy, Elsevier, vol. 221(C).
    10. Boldrini, A. & Jiménez Navarro, J.P. & Crijns-Graus, W.H.J. & van den Broek, M.A., 2022. "The role of district heating systems to provide balancing services in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    11. Kavian, Soheil & Hakkaki-Fard, Ali & Jafari Mosleh, Hassan, 2020. "Energy performance and economic feasibility of hot spring-based district heating system – A case study," Energy, Elsevier, vol. 211(C).
    12. Marco Pellegrini & Augusto Bianchini, 2018. "The Innovative Concept of Cold District Heating Networks: A Literature Review," Energies, MDPI, vol. 11(1), pages 1-16, January.
    13. Janne Suhonen & Juha Jokisalo & Risto Kosonen & Ville Kauppi & Yuchen Ju & Philipp Janßen, 2020. "Demand Response Control of Space Heating in Three Different Building Types in Finland and Germany," Energies, MDPI, vol. 13(23), pages 1-35, November.
    14. Capone, Martina & Guelpa, Elisa & Mancò, Giulia & Verda, Vittorio, 2021. "Integration of storage and thermal demand response to unlock flexibility in district multi-energy systems," Energy, Elsevier, vol. 237(C).
    15. Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    16. Kaisa Kontu & Jussi Vimpari & Petri Penttinen & Seppo Junnila, 2018. "City Scale Demand Side Management in Three Different-Sized District Heating Systems," Energies, MDPI, vol. 11(12), pages 1-18, December.
    17. Annelies Vandermeulen & Ina De Jaeger & Tijs Van Oevelen & Dirk Saelens & Lieve Helsen, 2020. "Analysis of Building Parameter Uncertainty in District Heating for Optimal Control of Network Flexibility," Energies, MDPI, vol. 13(23), pages 1-25, November.
    18. Kim, Ryunhee & Hong, Yejin & Choi, Youngwoong & Yoon, Sungmin, 2021. "System-level fouling detection of district heating substations using virtual-sensor-assisted building automation system," Energy, Elsevier, vol. 227(C).
    19. Volkova, Anna & Mašatin, Vladislav & Siirde, Andres, 2018. "Methodology for evaluating the transition process dynamics towards 4th generation district heating networks," Energy, Elsevier, vol. 150(C), pages 253-261.
    20. Cai, Hanmin & Ziras, Charalampos & You, Shi & Li, Rongling & Honoré, Kristian & Bindner, Henrik W., 2018. "Demand side management in urban district heating networks," Applied Energy, Elsevier, vol. 230(C), pages 506-518.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:214:y:2021:i:c:s0360544220319563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.