IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i17p4509-d1473961.html
   My bibliography  Save this article

Utilizing Connection of Multiple Peltier Cells to Enhance the Coefficient of Performance

Author

Listed:
  • Jan Rimbala

    (Department of Electrical Power Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, Prague 6, 166 27 Prague, Czech Republic)

  • Jan Kyncl

    (Department of Electrical Power Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, Prague 6, 166 27 Prague, Czech Republic)

  • Jan Koller

    (Department of Electrical Power Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, Prague 6, 166 27 Prague, Czech Republic)

  • Ghaeth Fandi

    (Department of Electrical Power Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, Prague 6, 166 27 Prague, Czech Republic)

Abstract

Peltier cells are commonly used in low-power cooling applications, such as automotive refrigerators and electronics temperature regulation systems. These applications are typically low-energy in nature. There is currently a growing emphasis on energy conservation and waste heat utilization in the energy industry. This paper explores the possibility of improving the heating or cooling coefficient of performance (COP) of Peltier cells through intelligent serial and parallel connections. The purpose of this work is to raise the question of whether it would be possible to reconsider the concept of harnessing the “energy” potential of Peltier cells. The utilized model is in line with the current state of the art, and the case study is based on parameters measured on a commercially available Peltier cell. The resulting COP, when considering current materials, remains inferior to the COP of compressor-based heat pumps. For low-power devices, it can represent a technically and economically comparable solution.

Suggested Citation

  • Jan Rimbala & Jan Kyncl & Jan Koller & Ghaeth Fandi, 2024. "Utilizing Connection of Multiple Peltier Cells to Enhance the Coefficient of Performance," Energies, MDPI, vol. 17(17), pages 1-18, September.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4509-:d:1473961
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/17/4509/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/17/4509/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ibañez-Puy, María & Bermejo-Busto, Javier & Martín-Gómez, César & Vidaurre-Arbizu, Marina & Sacristán-Fernández, José Antonio, 2017. "Thermoelectric cooling heating unit performance under real conditions," Applied Energy, Elsevier, vol. 200(C), pages 303-314.
    2. Yin, Tao & He, Zhi-Zhu, 2021. "Analytical model-based optimization of the thermoelectric cooler with temperature-dependent materials under different operating conditions," Applied Energy, Elsevier, vol. 299(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duan, Mengfan & Sun, Hongli & Lin, Borong & Wu, Yifan, 2021. "Evaluation on the applicability of thermoelectric air cooling systems for buildings with thermoelectric material optimization," Energy, Elsevier, vol. 221(C).
    2. Zhao, Dongliang & Yin, Xiaobo & Xu, Jingtao & Tan, Gang & Yang, Ronggui, 2020. "Radiative sky cooling-assisted thermoelectric cooling system for building applications," Energy, Elsevier, vol. 190(C).
    3. Pedram Asef & Marzia Milan & Andrew Lapthorn & Sanjeevikumar Padmanaban, 2021. "Future Trends and Aging Analysis of Battery Energy Storage Systems for Electric Vehicles," Sustainability, MDPI, vol. 13(24), pages 1-28, December.
    4. Kashif Irshad, 2021. "Performance Improvement of Thermoelectric Air Cooler System by Using Variable-Pulse Current for Building Applications," Sustainability, MDPI, vol. 13(17), pages 1-13, August.
    5. Ahmed, Hossam A. & Megahed, Tamer F. & Mori, Shinsuke & Nada, Sameh & Hassan, Hamdy, 2023. "Novel design of thermo-electric air conditioning system integrated with PV panel for electric vehicles: Performance evaluation," Applied Energy, Elsevier, vol. 349(C).
    6. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Yu, Jinghua & Xu, Xinhua & Su, Xiaosong, 2020. "Towards net zero energy building: The application potential and adaptability of photovoltaic-thermoelectric-battery wall system," Applied Energy, Elsevier, vol. 258(C).
    7. Ye-Qi Zhang & Jiao Sun & Guang-Xu Wang & Tian-Hu Wang, 2022. "Advantage of a Thermoelectric Generator with Hybridization of Segmented Materials and Irregularly Variable Cross-Section Design," Energies, MDPI, vol. 15(8), pages 1-18, April.
    8. Ibáñez-Puy, Elia & Martín-Gómez, César & Bermejo-Busto, Javier & Zuazua-Ros, Amaia, 2018. "Thermal and energy performance assessment of a thermoelectric heat pump integrated in an adiabatic box," Applied Energy, Elsevier, vol. 228(C), pages 681-688.
    9. Ramakrishnan Iyer & Aritra Ghosh, 2023. "Investigation of Integrated and Non-Integrated Thermoelectric Systems for Buildings—A Review," Energies, MDPI, vol. 16(19), pages 1-17, October.
    10. Afshari, Faraz & Mandev, Emre & Muratçobanoğlu, Burak & Yetim, Ali Fatih & Ceviz, Mehmet Akif, 2023. "Experimental and numerical study on a novel fanless air-to-air solar thermoelectric refrigerator equipped with boosted heat exchanger," Renewable Energy, Elsevier, vol. 207(C), pages 253-265.
    11. Sun, Hongli & Lin, Borong & Lin, Zhirong & Zhu, Yingxin, 2019. "Experimental study on a novel flat-heat-pipe heating system integrated with phase change material and thermoelectric unit," Energy, Elsevier, vol. 189(C).
    12. Zhao, Dongliang & Lu, Xing & Fan, Tianzhu & Wu, Yuen Shing & Lou, Lun & Wang, Qiuwang & Fan, Jintu & Yang, Ronggui, 2018. "Personal thermal management using portable thermoelectrics for potential building energy saving," Applied Energy, Elsevier, vol. 218(C), pages 282-291.
    13. Sun, Dongfang & Shen, Limei & Sun, Miao & Yao, Yu & Chen, Huanxin & Jin, Shiping, 2018. "An effective method of evaluating the device-level thermophysical properties and performance of micro-thermoelectric coolers," Applied Energy, Elsevier, vol. 219(C), pages 93-104.
    14. Minseong Kim & Yong-Kwon Kang & Jaewon Joung & Jae-Weon Jeong, 2022. "Cooling Performance Prediction for Hydraulic Thermoelectric Radiant Cooling Panels with Experimental Validation," Sustainability, MDPI, vol. 14(23), pages 1-17, December.
    15. Cai, Yang & Wang, Lei & Ding, Wen-Tao & Liu, Di & Zhao, Fu-Yun, 2019. "Thermal performance of an active thermoelectric ventilation system applied for built space cooling: Network model and finite time thermodynamic optimization," Energy, Elsevier, vol. 170(C), pages 915-930.
    16. Zuazua-Ros, Amaia & Martín-Gómez, César & Ibañez-Puy, Elia & Vidaurre-Arbizu, Marina & Gelbstein, Yaniv, 2019. "Investigation of the thermoelectric potential for heating, cooling and ventilation in buildings: Characterization options and applications," Renewable Energy, Elsevier, vol. 131(C), pages 229-239.
    17. Dhumane, Rohit & Ling, Jiazhen & Aute, Vikrant & Radermacher, Reinhard, 2017. "Portable personal conditioning systems: Transient modeling and system analysis," Applied Energy, Elsevier, vol. 208(C), pages 390-401.
    18. Ma, Xiaoli & Zhang, Yufeng & Han, Zhonghe & Zang, Ningbo & Liu, Zhijian, 2023. "Performance modelling on a thermoelectric air conditioning system using high power heat sinks and promoting waste heat utilization," Energy, Elsevier, vol. 268(C).
    19. Chang, Chun & Wu, Zhiyong & Navarro, Helena & Li, Chuan & Leng, Guanghui & Li, Xiaoxia & Yang, Ming & Wang, Zhifeng & Ding, Yulong, 2017. "Comparative study of the transient natural convection in an underground water pit thermal storage," Applied Energy, Elsevier, vol. 208(C), pages 1162-1173.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4509-:d:1473961. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.